

MicroCarb status after launch and needs towards the COCCON community

COCCON telecon 02/10/2025

Denis JOUGLET

(MicroCarb performance manager, CNES) denis.jouglet@cnes.fr

Christel GUY

(MicroCarb validation means manager, CNES) christel.guy@cnes.fr

MicroCarb at a glance

- Main product: CO₂ column integrated concentration
 - Rqmt for random error < 0.5 ppm (G), < 1.5ppm (T)
 - Rqmt for regional bias < 0.1 ppm (G), < 0.2 ppm (T)

Objectives

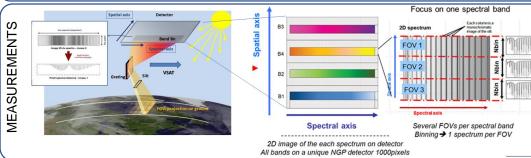
- Natural CO₂ fluxes at regional scale
- Demonstrator for CO₂ anthropogenic emissions (city mode)

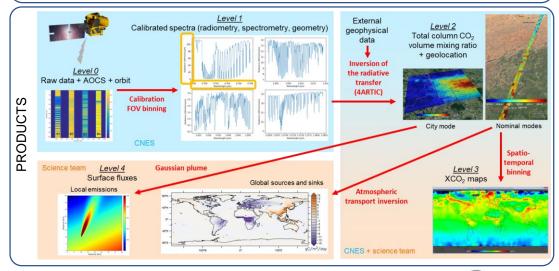
Orbit

- Polar sun-synchronous, alt 649 km, descending node 10h30
- Cycle 25 days, sub-cycle 7 days, ± 200km ACT mirror
- → Any target can be observed once a week

Observations modes

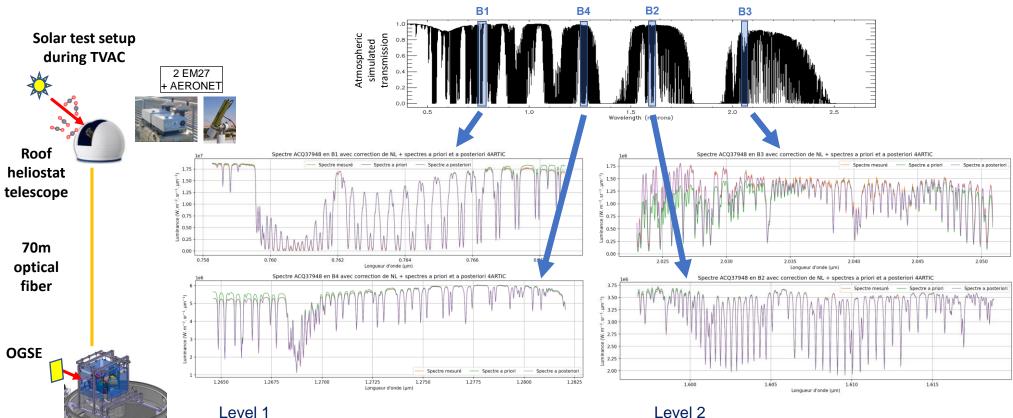

- Science: Nadir, scan, glint, city
- Calibration: Shutter, Lamp, Sun, Moon, Limb
- Validation: Fixed-Target, Off-nadir target


Instrument


- Passive SWIR grating spectrometer
 - O₂ 0.76 μm, O₂ 1.27 μm, CO₂ 1.61 μm, CO₂ 2.05 μm
 - High resolving power (λ/FWHM = 25,000)
 - 3 ACT footprints 4.5x9 km²
- Embedded imager (red band, 140m) for cloud & geolocation
- Compact instrument (80 kg, 60W) on micro-satellite (180kg)

XCO2 retrieval : 4ARTIC

Full physics model, retrieval by optimal estimation

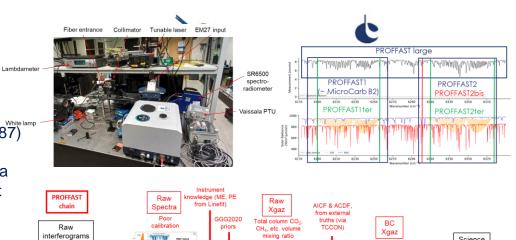


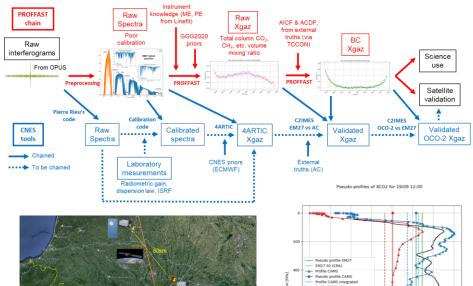
MicroCarb TVAC atmospheric observations (fall 2022)

- Good general shape
- Some residuals affecting continuum and line bottom
- Partly related to unstabilized detector during TVAC

- Nominal observations: 2.5ppm bias
- Scene-variable observations: a few ppm bias
- Also partly relatied to unstabilized detector

TVAC chamber

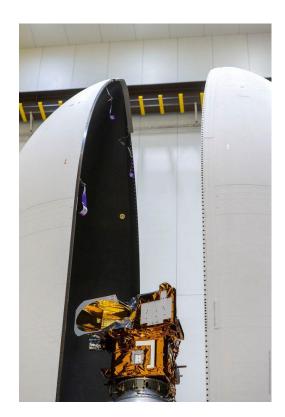

MicroCarb works with EM27/SUN


Rationale

- CNES has owned an EM27/SUN (92) since 2018, now an second (287)
- We want to process MicroCarb's sun-looking measurements
- We want to train the MicroCarb methodologies on EM27/SUN spectra
- We want to increase our confidence in this important validation asset

Works

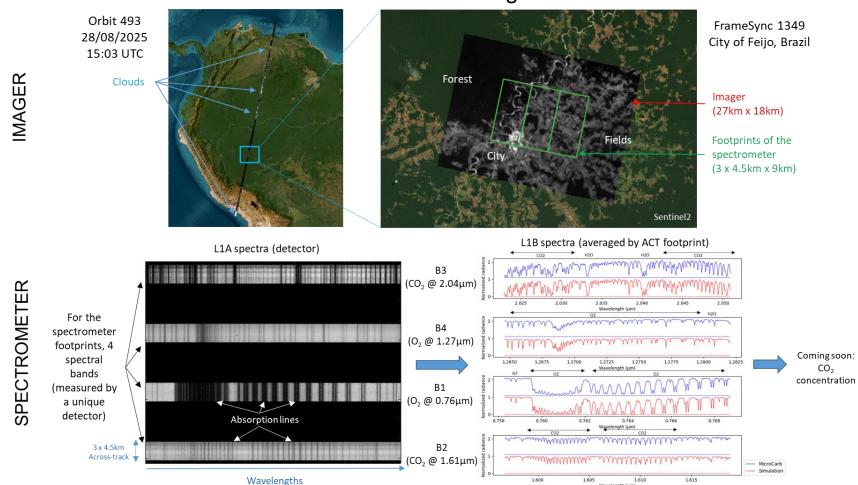
- Calibration of EM27/SUN (radiometry, ISRF) at CNES facilities
- MicroCarb retrieval tool 4ARTIC applied on EM27 spectra
- Validation of EM27/SUN (PROFFAST) vs AirCores
 - $\Delta XCO2$ (92) = -0.21±0.64 ppm (15 flights)
 - $\Delta XCO2 (118) = -0.08 \pm 0.50 \text{ ppm (5 flights)}$
 - $\Delta XCO2 (130) = 0.01 \pm 0.43 \text{ ppm (21 flights)}$
- Specific campaigns (CNES with partners)
 - Cross-comparison of several EM27/SUN
 - · Partial columns @ Pic du Midi top and bottom
 - Super-sites @ Aire sur l'Adour, Reims (EM27, AERONET, AirCore)
 - · Regular comparison to satellites
- → For next telecons!



July 10th → Sep 24th 2024, EM27 in automatic casings

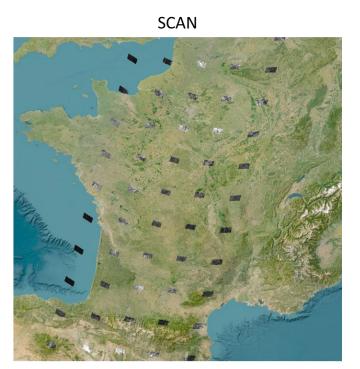
Successful launch (summer 2025)

Fairing enclosure

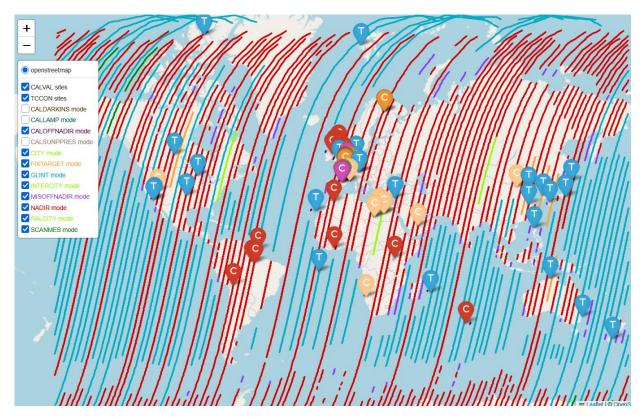


VEGA-C (VV27) launch Kourou, French Guyana 26/07/2025 02:03 UTC

MicroCarb first light



Observation modes

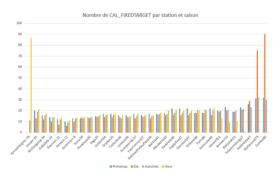

TARGET and CITY modes also functional

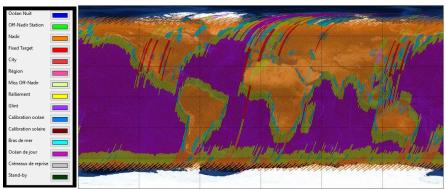
Orbits from 15/09/2025 to 21/09/2025

T = TCCON site

C = Other CALVAL site (EM27/SUN, deserts, SIF tower)

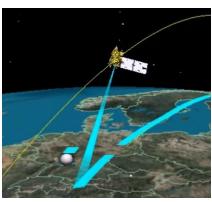
CALOFFNADIR modes (pointing mirror) to target EM27/SUNs





Opportunities and validation modes

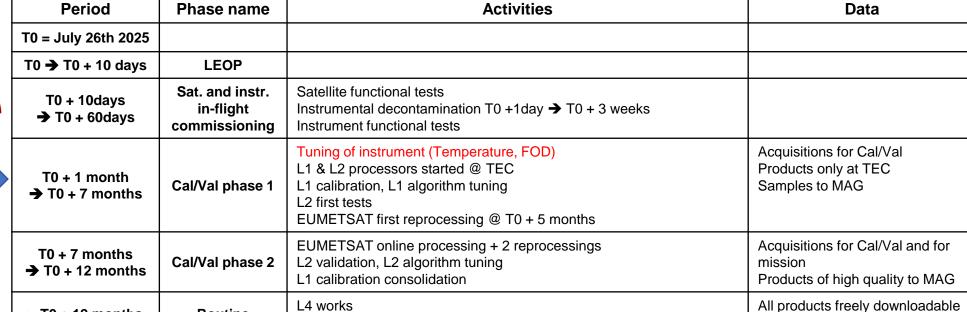
- Opportunities with our orbit and ACT pointing mirror
 - We can observe each location at least 1 per week
 - ~1 per month when considering clear sky
 - With 30 stations (e.g TCCON), MicroCarb will get ~2 clear sky opportunities / day = 700/year


Example of a mission plan 1 cycle = 368 orbits = 25 days

Observation modes

Fixed-Target (~OCO-2) Off-nadir target Target Mode observes surface zenith angles between ±75°

- Pitch manoeuver to stay ~7min on the station
- Brings much data at each overpass
- But large cost for the mission availablity (~50%)
- → Numerous in cal/val, decrease in routine

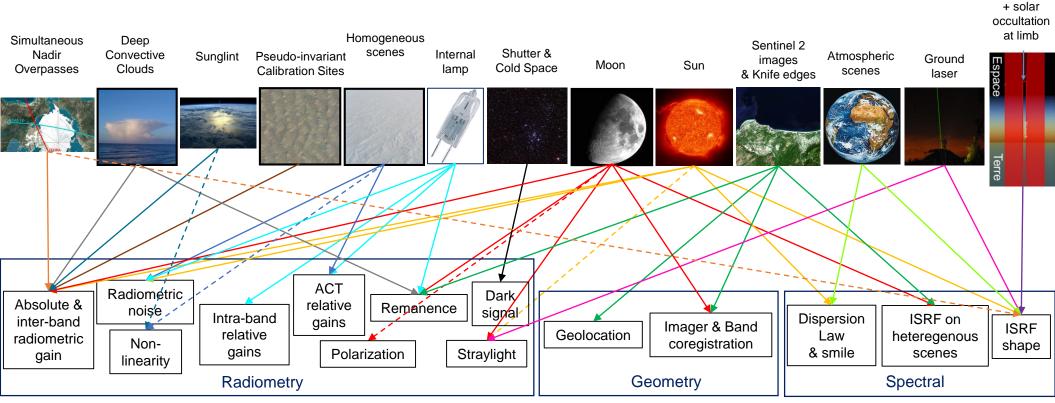

- No pitch manoeuver, only an across track mirror shift
- No cost for the mission availability
- But brings only few data at each overpass
- → As often as possible (cal/val and routine)

from AERIS & EUMETSAT

Cal/Val planning

L1 & L2 validation and algorithm tuning goes on

> T0 + 12 months


Routine

Sources for L1 calibration

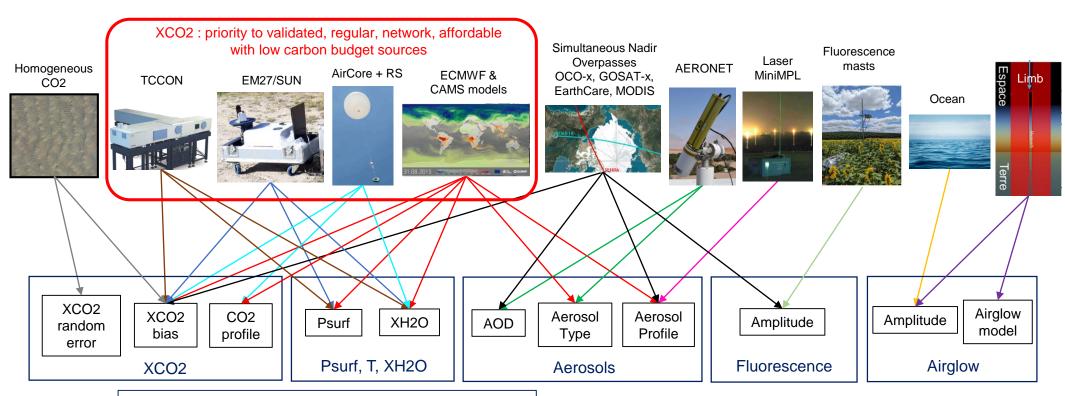
We have many sources and methodologies that will cover most of the in-flight performances

Large CNES heritage from imagery missions (PARASOL, Pleiades, S2)
Adaptations to MicroCarb

Low CNES heritage On-going specific developments

Airglow

emission


L2 Cal/Val objectives

- Quantification of the MicroCarb error
 - Characterization of the systematic errors
 - Distinguish natural variations from measurement error
 - Instrumental defects / satellite / L1 processors / L2 processors
 - Update of the processing chains (parameters and algorithms)
 - Unvalid footprint flagging
 - Compliance status to mission requirement: random error, regional biases
 - Empirical bias correction
 - **→** Massive statistics are uppermost important
 - To discriminate the different bias sources
 - To make bias emerge from noise
- XCO2 traceability to WMO standart (global bias)
 - Important for users assimilating various products
 - Requires to reduce intermediate standards
- Quality check
- Validate secondary science products: aerosols, SIF, airglow, Psurf, XH2O, clouds

Sources for L2 validation

Massive statistics are uppermost important

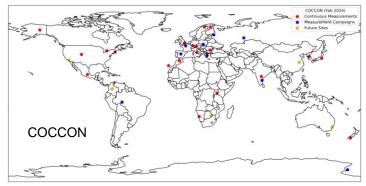
- To discriminate the different bias sources
- To make bias emerge from noise

COCCON for MicroCarb

- TCCON is of high interest, but with limitations
 - ~30 stations
 - Heterogenously dispatched and mostly in Northern Hemisphere
 - → Representativity in atmospheres and availability for satellites (incl weather) deserves improvement

COCCON

- ~40 sites in COCCON network (https://www.imkasf.kit.edu/english/3884.php)
- ~20 sites in areas deprived of TCCON stations → complementary to TCCON, therefore very useful for us


E.g. Bologna, Boulder, Daejeon, Fairbanks, Gobabeb, Harvard, Kiruna, Koror, London, Magurele, Mexico City, Roma, Seoul, Spain sites, St Petersburg, Thessaloniki, Toronto, Yekaterinburg

Sites collocated with TCCON → also useful to scale both networks

EM27/SUN not referenced in COCCON

- Some Fr and UK sites (involved in MicroCarb science team)
- Others?
- We would like to get data from most EM27/SUN in the world!

Needs towards COCCON

(Similar needs as expressed to TCCON and AirCore communities)

Needs

- Supply of only measurements of the day of the MicroCarb overpass: complete day (O), ±1hr around the overpass (T)
- Supply of Xgaz with all outputs from PROFFAST, last official version PROFFAST
- Ideally supply of raw measurements (OPUS, PTU, maps) to enable us to reprocess with further versions
- Ideally short timeliness delivery (2 weeks (O), 4 weeks (T))
- Starts mid-september 2025, enforced for period 01/01/2026 31/12/2026

MicroCarb overpasses warnings

For casual measurements, AERIS provides the mission plan

(https://www.icare.univ-lille.fr/asd-content/DATA/LIENS/MICROCARB/CARB_MISSION_PLAN_MAP/latest)

- Scheme for TCCON
 - Every week, CNES sends an "information email" for opportunities in next 2 weeks
 - Every day, CNES sends a "confirmation email" for actual observation on D+1, based on operational status (from web site) and on weather forecast
 - After observation, CNES sends a "feedback email"
- For COCCON, choice of
 - No warning → only OFFNADIR targets on operational sites
 - Or manual warning (partially similar to the TCCON process) → compulsory for FIXED-TARGETs

Data delivery

- From COCCON: Up to now no FTP server available globally at CNES → Either local FTP server or temporary links
- From MicroCarb: freely released in routine within ~2 days

MicroCarb and COCCON

We look forward to get data from most EM27/SUN in the world!

→ Please feel free to contact us if you are willing to take part to MicroCarb's validation © denis.jouglet@cnes.fr
christel.guy@cnes.fr

From our side we also plan to contact PIs of some sites or national networks (but we need a contact list)