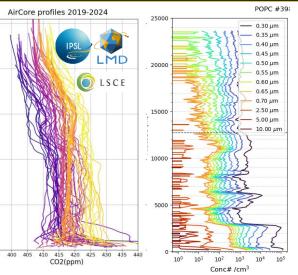


AEROLAB and « MDH » site @REIMS (France) 1/2

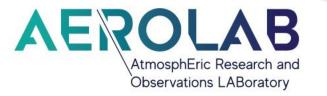
- AEROLAB = A research structure to provide expertise and solutions for monitoring and analyzing atmospheric emissions
- AEROLAB was born from the GSMA



AEROLAB and « MDH » site @REIMS (France) 2/2

Nasa achievement award (2025)

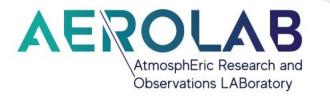
GHG (AirCore) + aerosol (POPC)



https://magic.aeris-data.fr/magic2022/#logbook

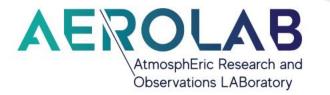
COCCON MEETING OCtober 2nd 2025

Monitoring of greenhouse gases at the MDH location and assessment of the informative capabilities of the EM27/SUN with the ARAHMIS algorithm


Presented by: EL HABCHI EL FENNIRI Hajar

Context and Objectives of the Thesis

Scientific Context


- EM27/SUN spectrometers: key tools for calibration and validation of satellite GHG observations. Part of the European strategy for high-precision carbon monitoring (≈1 ppm, errors <0.5 ppm; Ciais et al., 2021).
- Thesis: use the ARAHMIS inversion model to analyze information content and identify sensitive spectral channels.

Objectives

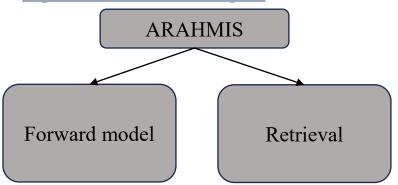
- Investigate the information content of the EM27/SUN instrument.
- Propose potential improvements to PROFFAST or validate its current settings.
- Develop a unified inversion framework applicable to EM27/SUN data as well as satellite or other instruments (e.g., CHRIS).

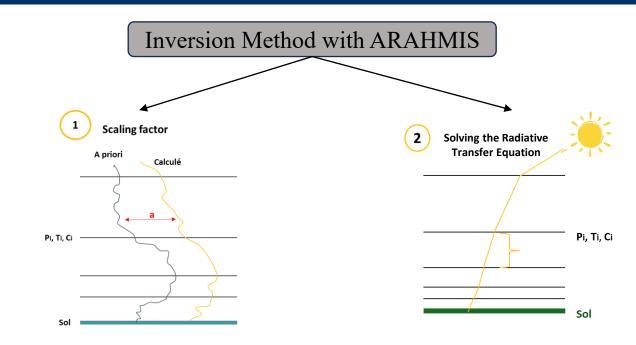
[Ciais2015]: Ciais, P.; Crisp, D.; van der Gon, H.; Engelen, R.; Janssens-Maenhout, G.; Hiemann, M. & Rayner, P. Towards a European Operational Observing System to Monitor Fossil CO2 emissions— Final Report from the expert group European Commission Joint Research Centre, 2015

Hajar El Habchi El Fenniri COCCON MEETING OCtober 2nd 2025

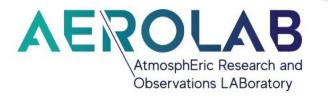
ARAHMIS Algorithm

Context:

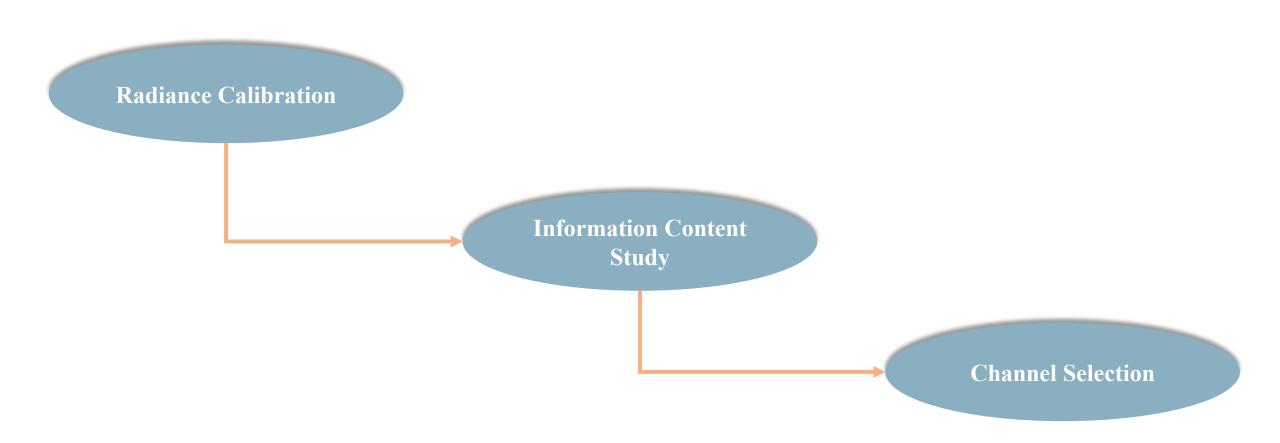

- Developed at LOA (H. Herbin & F. Ducos)
- Reference code for space mission preparation:

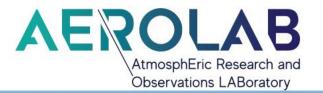

IASI-NG, Biodiversity, FORUM, MicroCarb [1]

Collaboration:

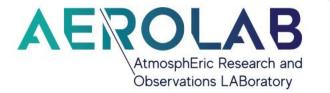

- Access obtained during WS Magic 2023 (16/05/2023)
- Collaboration initiated with Prof. H. Herbin

Operates in Two Steps:


Advantages	Drawbacks
SF & ETR	Requires Radiance Calibration
Inclusion of Aerosols	Time-consuming
Sandbox Mode – Adaptable to Observation Needs	! Spectrum Calibrated in Radiance!



Steps to Achieve ARAHMIS



 (CO_2)

CH₄

H₂O)

Radiance Calibration

Radiance Calibration

Why calibrate?

- The EM27/SUN records FTIR spectra of direct solar radiation.
- High radiometric accuracy is required to retrieve reliable atmospheric column amounts (CO₂, CH₄, etc.).
- Calibration errors directly affect the quality of trace gas retrievals.

Current status (Transfer Function step):

• For now, the Transfer Function (TF) is performed using OPUS.

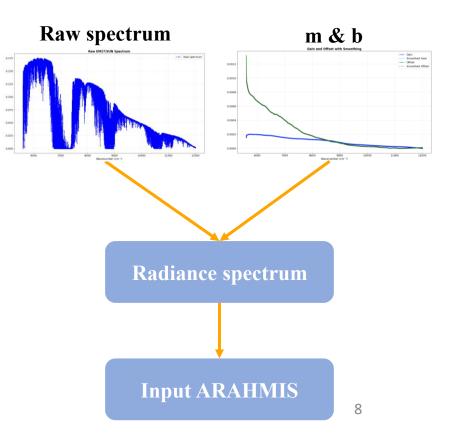
Method used:

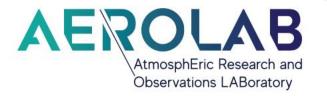
• Method is based on the calculation of two parameters (Revercomb et al., 1988, adapted):

m (slope of the instrument response) & **b** (offset of the instrument response)

$$m = \frac{S_c - S_h}{B_{\vartheta}(T_c) - B_{\vartheta}(T_h)} \qquad b = \frac{S_c \cdot B_{\vartheta}(T_h) - S_h \cdot B_{\vartheta}(T_c)}{B_{\vartheta}(T_h) - B_{\vartheta}(T_c)}$$

 S_c spectrum at 1523 K, recorded using the LOA blackbody

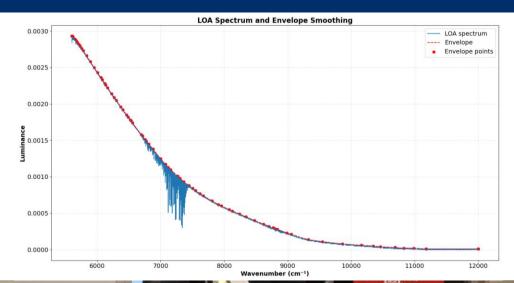

S_h EM27/SUN solar spectrum (maximum), recorded under optimal conditions (clean mirror, clear sky, solar noon).


 $B_{\vartheta}(T_c)$ blackbody radiance at 1523 K, calculated using Planck's law

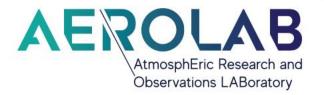
 $B_{\mathfrak{g}}(T_{\mathbf{h}})$ blackbody radiance at 6011 K, from LATMOS (recent solar reference spectrum).

$$L=\frac{S-b}{m}$$

Blackbody Spectrum Recording – EM27/SUN


Cold blackbody spectrum (1523 K) recorded at LOA with the EM27/SUN → used as reference (radiometrically calibrated)

Processing of the 1523 K spectrum:


Applied smoothing using an upper-envelope modeling approach.

Method:

- Manually selected control points.
- PCHIP interpolation (Piecewise Cubic Hermite Interpolating Polynomial) → Code Python
- Advantages: Avoids oscillations & Preserves monotonicity of the data.

Solar Spectrum Correction and Smoothing

Reference spectrum:

• The new solar spectrum from LATMOS (doi: 10.21413/SOLAR-V-DATABASE-SSI.L3.V1_SOLSPEC-LATMOS), measured by the SOLAR/SOLSPEC instrument on the ISS.

Attenuation at ground level:

• The solar spectrum is attenuated by: Rayleigh scattering (ROD) & Aerosols (AOD) (Casinière et al., 2005)

 $AOD = \cos(SZA) \ln \left(\frac{K_d I_{0\lambda}}{I_{\lambda}} \right) - ROD - k_0 \Omega$

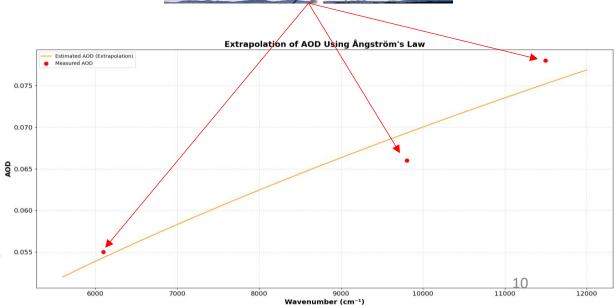
Assumptions:

- Seasonal Sun–Earth variation negligible $\rightarrow K_d = 1$
- NIR: ozone absorption negligible $\rightarrow k_0 \Omega \approx 0$

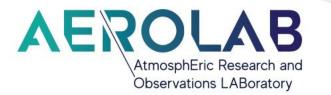
Corrected spectrum:

$$I_{\lambda} = I_{0\lambda} \cdot e^{\left(-\frac{(AOD + ROD)}{\cos(SZA)}\right)}$$

Rayleigh optical depth (ROD):


ROD =
$$0.008569(\lambda)^{-4}(1+0.0113(\lambda)^{-2}+0.00013(\lambda)^{-4})$$

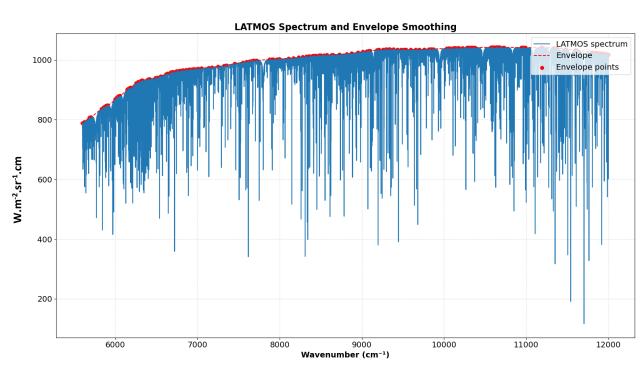
Aerosol Optical Depth(AERONET data: the three red points):


Extrapolated using Ångström's law :

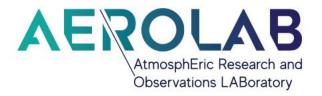
Hajar El Habchi El Fenniri

0.055 -

AEROSOL ROBOTIC NETWORK



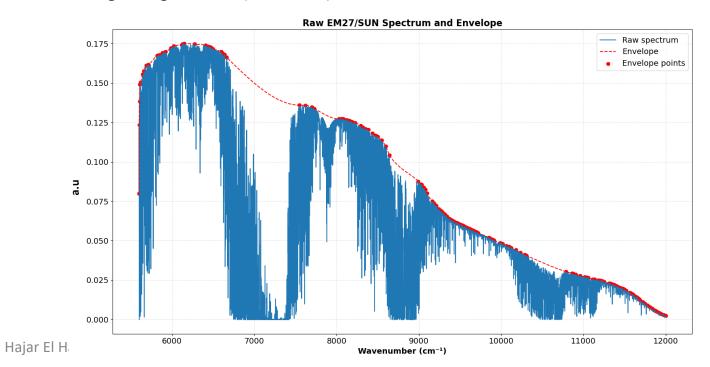
Solar Spectrum Correction and Smoothing


Comparison between solar spectrum before and after correction

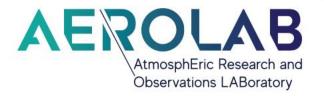
LATMOS Spectrum with & without correction 800 400 LATMOS Luminance without correction LATMOS Luminance without correction LATMOS Luminance with correction Wavenumber (cm⁻¹)

Corrected spectrum with smoothing (PCHIP interpolation), same method as before

Hajar El Habchi El Fenniri COCCON MEETING OCtober 2nd 2025 11

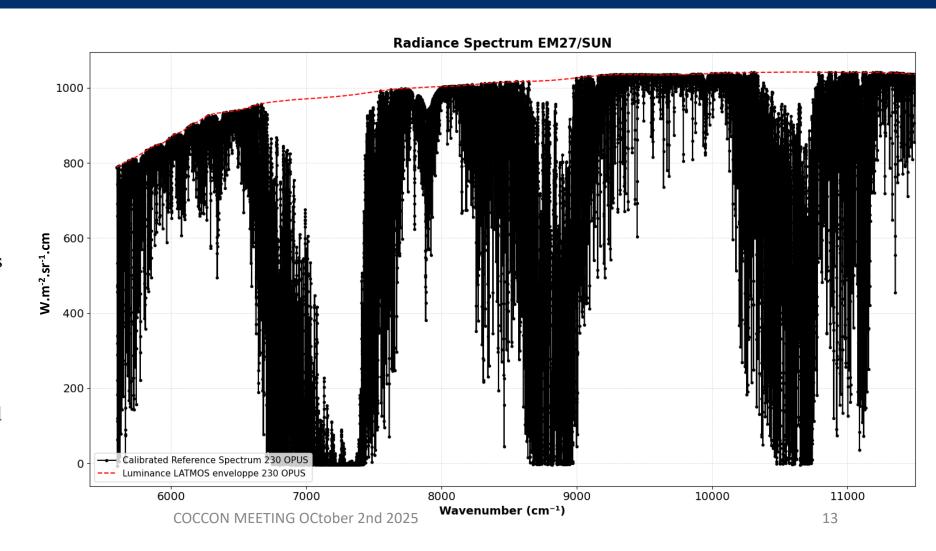

Selection of the EM27/SUN Spectrum

Acquisition conditions:


- Sunny day June 13, 2023
- Selected spectrum: maximum recorded during the day

Processing applied:

- Spectre brut de l'EM27/SUN (Blue curve).
- Smoothing using PCHIP (red curve).

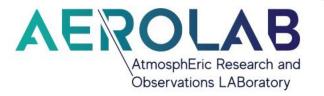


Calibrated Solar Spectrum – EM27/SUN

Final spectrum obtained after:

- Radiometric calibration (twopoint method).
- Correction for Rayleigh scattering (ROD) and aerosols (AOD).
- Smoothing with PCHIP interpolation.

Spectrum is now ready to be used for ARAHMIS



 (CO_2)

CH₄

H₂O)

Input Data for ARAHMIS

Input Data for ARAHMIS

- HITRAN Line by Line
- **HITRAN Crossed-Sections**
- Continued (H₂O and CO₂)

Spectre

Calculation of the direct lineby-line model

- Atmospheric model
- Solar spectrum
- Aerosols (complex refractive indices)
- Instrumental noise
- ILS
- CIA

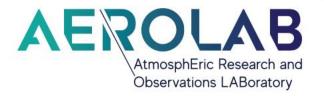
Coefficients d'absorption

LIDORT

Spectrum

calculation

V-LIDORT


Consideration of Diffusion

- Jacobian Matrices
- AVK averaging kernels
- Uncertainties
- Calculated spectrum
- Status vector
- Covariance matrices
- **Noise Matrices**
- Iterated matrices
- Convergence parameters
- Pixel recovery

Inversion

Channel selection

Restitution results: Xgaz

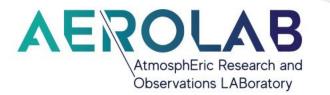
Adaptation of the GGG2020 Atmospheric Profile to ARAHMIS Requirements with In Situ Correction

Same a priori profile as PROFFAST

Ensures consistency in future comparisons (ARAHMIS vs PROFFAST)

Development of a Restructuring Code

Converts GGG2020 profile (default format \rightarrow ATM format)


Lowest layer

T & P replaced with in situ measurements (at spectrum time)

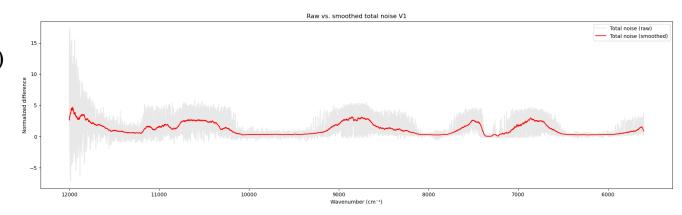
```
CIRPUT Version 1.0.6 JiL, SR, MK
Please see https://ccon-wiki.caltech.edu for a complete description of this file and its usage.
NOTE: The gas concentrations (including M20) are MET MOLE PRACITORS. If you require dry mole fractions voyadro (nolecules/mole): 6.02141e+23
voyadro (nolecules/mole): 6.02141e+23
vss_Gry_Art(Eg/mole): 6.02141e+23
vss_Gry_Art(Eg/mole): 6.02101534
(jght_Tenp_Pracitors): 40-23
                                                  0. ACQ, 27. 139 0. 1374-22, 0. 3088-18, 0. 3088-19, 0. 4081-26, 480. C99, 180. C97, 16. 5081-28, 1888-3, 1805-39, 0. 6095-3, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806-39, 1806
                                 307.490 293.218 289.144 285.021 281.706 278.266 275.197 271.494 268.409 263.17.
257.318 259.782 243.344 225.944 228.557 221.138 216.483 219.288 221.082 218.67 218.524 217.287 218.524 217.287 218.524 217.287 218.524 217.287 218.524 217.287 218.524 217.287 218.524 217.287 218.524 217.287 218.524 217.287 218.524 217.287 218.524 217.287 218.524 217.287 218.524 217.287 218.524 217.287 218.524 217.287 218.524 217.287 218.524 217.287 218.524 217.287 218.524 217.287 218.524 217.287 218.524 217.287 218.524 217.287 218.524 217.287 218.524 217.287 218.524 217.287 218.524 217.287 218.524 217.287 218.524 217.287 218.524 217.287 218.524 217.287 218.524 217.287 218.524 217.287 218.524 217.287 218.524 217.287 218.524 217.287 218.524 217.287 218.524 217.287 218.524 217.287 218.524 217.287 218.524 217.287 218.524 217.287 218.524 217.287 218.524 217.287 218.524 217.287 218.524 217.287 218.524 217.287 218.524 217.287 218.524 217.287 218.524 217.287 218.524 217.287 218.524 217.287 218.524 217.287 218.524 217.287 218.524 217.287 218.524 217.287 218.524 217.287 218.524 217.287 218.524 217.287 218.524 217.287 218.524 217.287 218.524 217.287 218.524 217.287 218.524 217.287 218.524 217.287 218.524 217.287 218.524 217.287 218.524 217.287 218.524 217.287 218.524 217.287 218.524 217.287 218.524 217.287 218.524 217.287 218.524 217.287 218.524 217.287 218.524 217.287 218.524 217.287 218.524 217.287 218.524 217.287 218.524 217.287 218.524 217.287 218.524 217.287 218.524 217.287 218.524 217.287 218.524 217.287 218.524 217.287 218.524 217.287 218.524 217.287 218.524 217.287 218.524 217.287 218.524 217.287 218.524 217.287 218.524 217.287 218.524 217.287 218.524 217.287 218.524 217.287 218.524 217.287 218.524 217.287 218.524 217.287 218.524 217.287 218.524 217.287 218.524 217.287 218.524 217.287 218.524 217.287 218.524 217.287 218.524 217.287 218.524 217.287 218.524 217.287 218.524 217.287 218.524 217.287 218.524 217.287 218.524 217.287 218.524 217.287 218.524 217.287 218.524 217.287 218.524 217.287 218.524 217.287 218.524 217.287 218.524 217.287
```

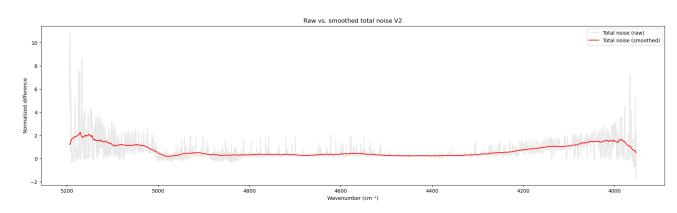
 1.149e+04
 1.068e+04
 9.088e+03
 7.722e+03
 4.068e+03
 2.554e+03
 9.983e+02
 1.176-03
 9.628e+02
 1.212e+03

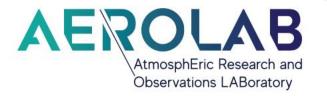
 6.722e+02
 3.979e+02
 3.754e+02
 3.095e+02
 1.955e+02
 8.981e+01
 4.56e+01
 3.422e+01
 9.25e+00
 6.072e+00
 6.072e+00
 4.38e+00
 4.078e+00
 4.078e+00
 5.072e+00
 5.072e+00
 5.174e+00
 5.174e+00
 5.174e+00
 5.174e+00
 6.174e+00
 6.174e+00<

Noise Handling in ARAHMIS

Two options:


- Provide a single SNR value (fixed across the spectrum)
- Provide a noise profile file (wavenumber-dependent)


In this study:


Noise calculated for our instrument as:

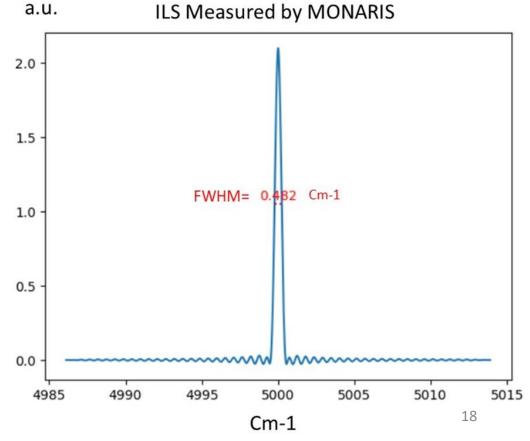
$$Noise = \frac{std(S_1 - S_2)}{\sqrt{2}}$$

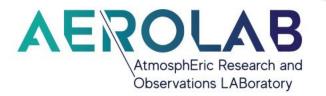
• Used directly as noise profile input in ARAHMIS

Instrument Line Shape (ILS) in ARAHMIS

ARAHMIS capabilities:

• Simulation of different apodization functions (sinc, gaussian, triangle, Lorentz, Norton-Beer weak, Norton-Beer medium, Norton-Beer strong Or direct ils file)


a.u. ILS Measured by MONARIS

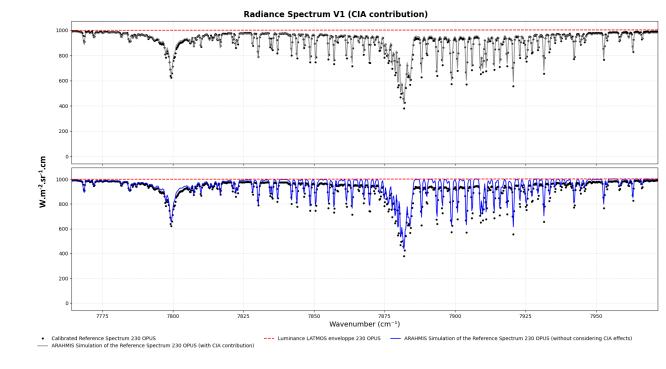

In this study:

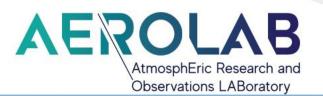
- Measured instrument ILS file employed
- Extracted with LINEFIT (v14.8)
- Methodology: Frey et al. (2015)
- Modulation & phase parameters: Alberti et al. (2022)
- File provided by the **MONARIS** team

Application:

- Measured ILS used as convolution kernel in ARAHMIS
- Ensures accurate reproduction of observed spectra

Collision-Induced Absorption (CIA)

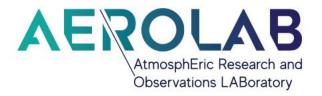

Definition / Importance


- Absorption due to transient dipoles created during molecular collisions.
- Crucial for an accurate simulation of measured spectra, especially in spectral regions affected by molecular interactions.
- Implemented in ARAHMIS according to the observation path used by EM27/SUN.

CIA Pairs Used

• Detector 1 (O₂): O₂-O₂, O₂-air

Hajar El Habchi El Fennici (N2): N2-N2, N2-air

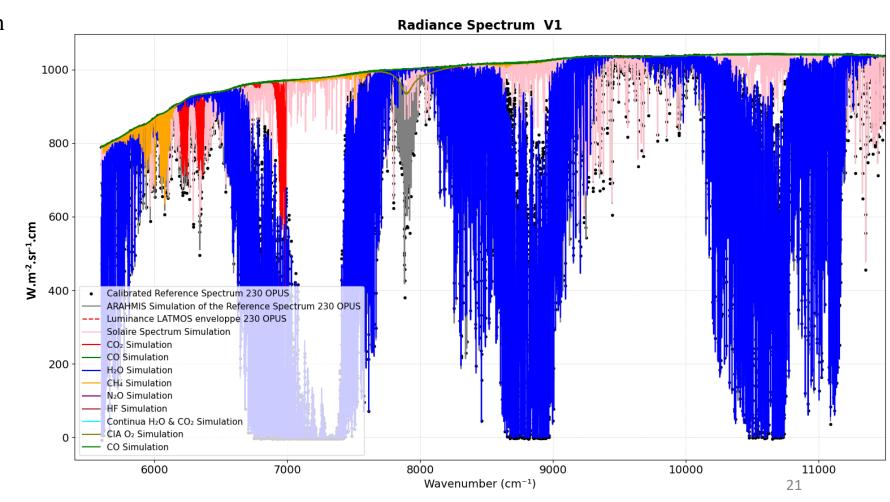


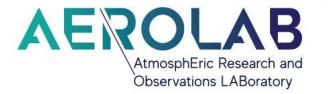
 (CO_2)

CH₄

H₂O

ARAHMIS Simulation

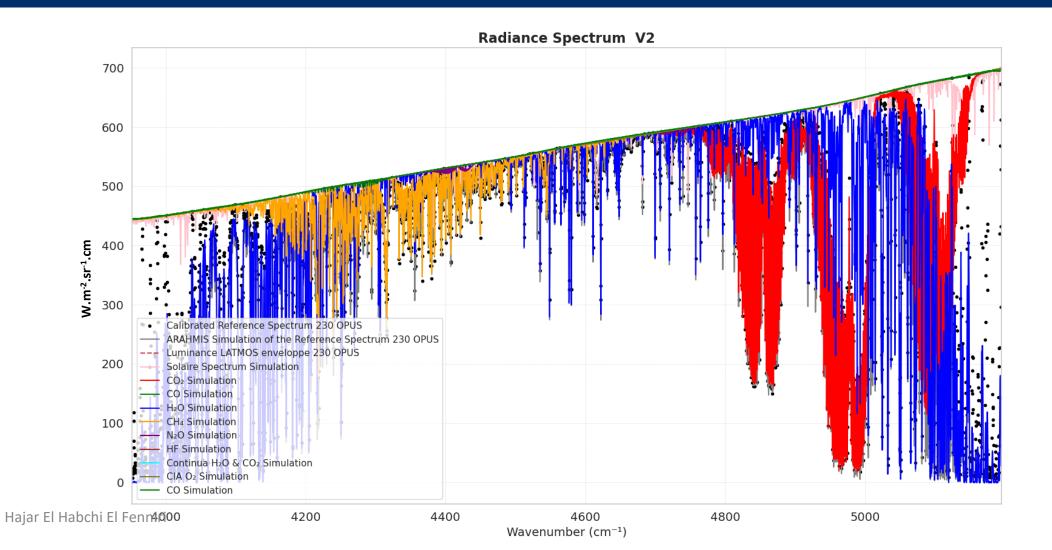


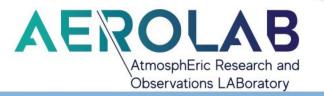

Comparison: Calibrated Spectrum vs ARAHMIS Simulation - Detector 1 (EM27/SUN)

- Calibrated EM27/SUN spectrum
- ARAHMIS simulated spectrum (total)

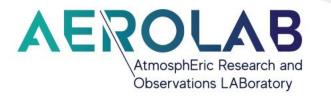
Individual contributions:

- Molecular absorption (CO₂, H₂O, CH₄, O₂, ...)
- CIA (Collision Induced Absorption)
- H₂O and CO₂ continua
- Solar reference spectrum





Comparison: Calibrated Spectrum vs ARAHMIS Simulation – Detector 2 (EM27/SUN)



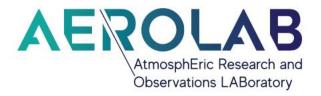
 (CO_2)

 H_2

Information Content Analysis

Information Content Analysis – Rodgers (2000) Framework

General framework:

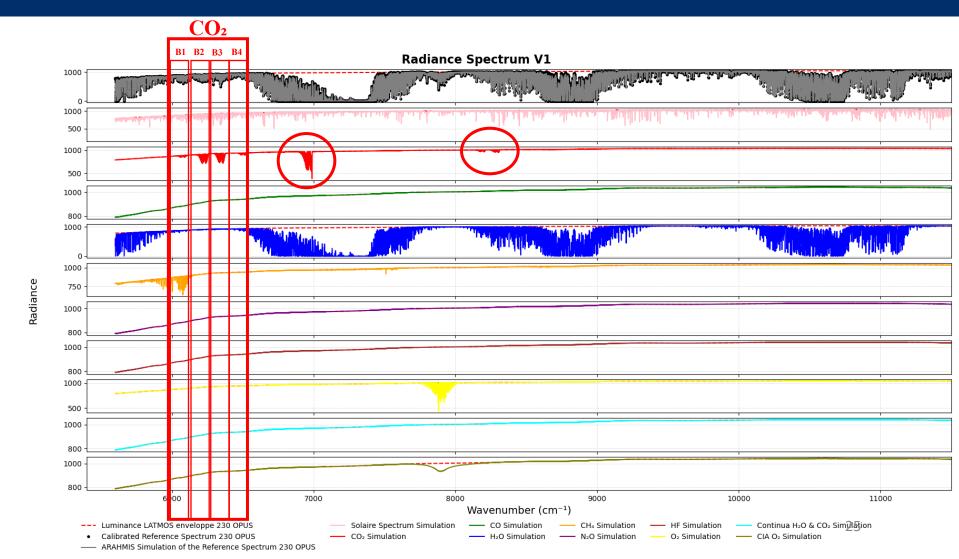

Rodgers' formalism (2000) quantifies the information content of measurements and the associated uncertainties.

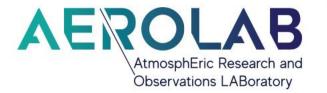
The analysis is based on (for more details, see chapter 3 of [Rodgers(2000)] C D Rodgers. Inverse Methods for Atmospheric Sounding. WORLD SCIENTIFIC, 2000.):

- Averaging Kernel (AVK) matrices.
- Different error sources in the retrieval.

Error sources considered:

- •Smoothing error: due to the influence of the a priori on the retrieved profile.
- •Model error: approximations in the radiative transfer representation.
- •Measurement error: instrumental uncertainties and measurement noise.
- •A priori error: linked to the choice of the assumed initial profile.

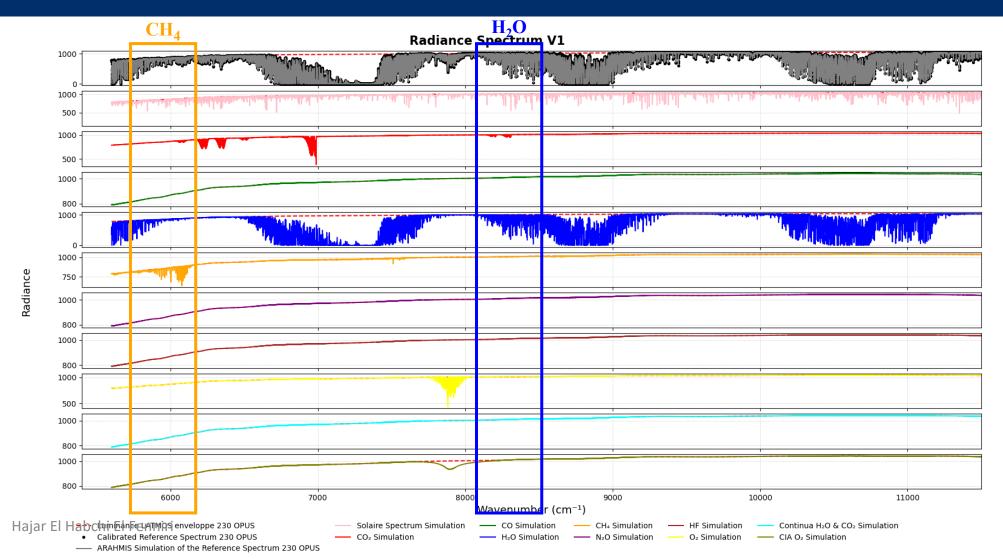


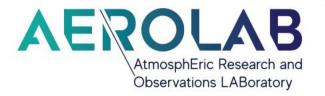

CHAMPAGNE-ARDENNE

Identification of Absorption Features – ARAHMIS Simulation - Detector 1 (EM27/SUN)

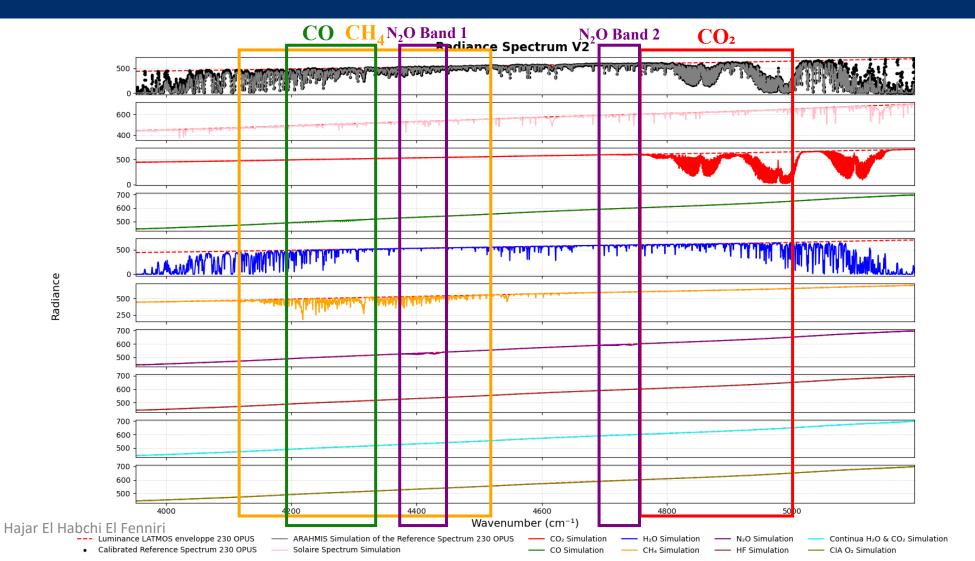
Objective:

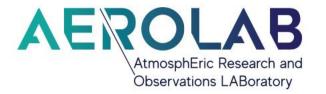
- •Identify absorption bands of each molecule.
- •Detect overlapping regions where several species absorb simultaneously.



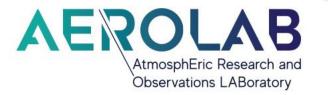


Identification of Absorption Features – ARAHMIS Simulation - Detector 1 (EM27/SUN)





Identification of Absorption Features – ARAHMIS Simulation - Detector 2 (EM27/SUN)

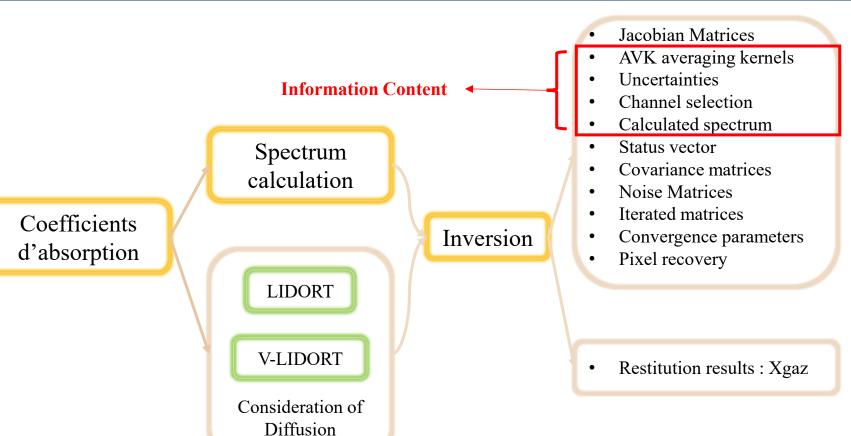

Summary of Entries

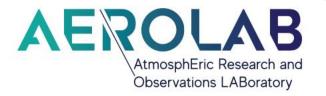
Detector 1:

		A priori	CIA O ₂ -O ₂ , O ₂ -air	Noise	ILS	Solar Spectrum Correction	$ m H_2O$	CO2	CH₄
	Band 1 : 6038.21709, 6107.88233	~	V	V	V	V	V	V	V
CO ₂	Band 2 : 6166.21794, 6259.02458	~	V	V	V	V	V	V	
Ö	Band 3: 6293.01351, 6379.79374	~	~	V	V	V	V	V	
	Band 4 : 6463.92236, 6533.82866	~	V	V	V	~	V	V	
$_{4}$	Band : 5741.2358, 6170.0748	~	V	V	V	V	V	V	V
H_2O	Band : 8318.12676, 8598.2340	~	V	V	V	V	V		

Detector 2:

		A priori	CIA N ₂ –N ₂ , N ₂ – air	Noise	ILS	Solar Spectrum Correction	$\mathrm{H_{2}O}$	CO ₂	CH ₄	CO	N ₂ O
CO ₂	Band: 4722.0501, 5002.1574	V	V	~	~	~	~	V			V
CH4	Band: 4179.1915, 4675.7673	~	V	~	~	V	~		~	~	V
00	Band: 4187.1464, 4326.9590	~	V	~	~	~	~		~	~	
N,0	Band 1: 4371.0723, 4442.9070	V	V	~	~	~	V		~		V
$\begin{bmatrix} \mathbf{Z} \\ \mathbf{Z} \end{bmatrix}$	Band 2: 4699.14982, 4756.7622	~	V	~	~	V	~	~			V

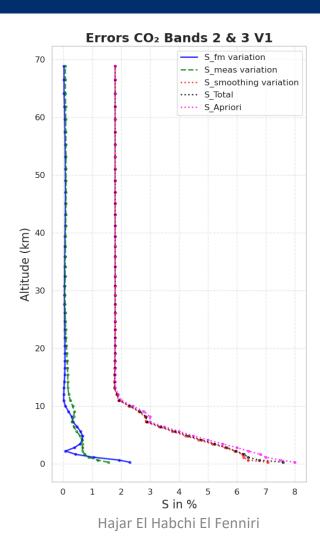

Output Data for ARAHMIS

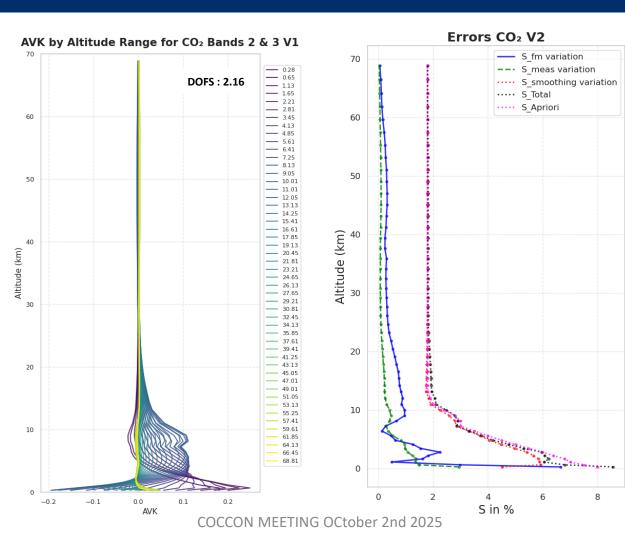

- HITRAN Line by Line
- **HITRAN Crossed-Sections**
- Continued ()

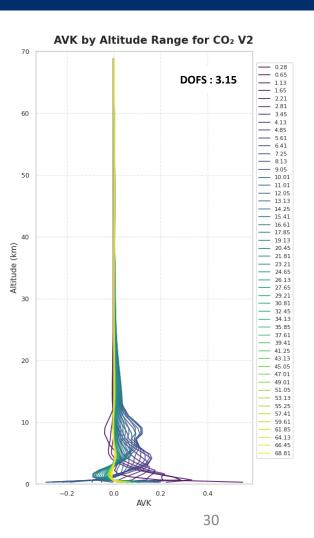
Calculation of Spectre

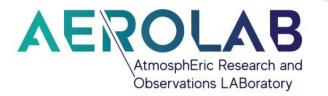
the direct lineby-line model

- Atmospheric model
- Solar spectrum
- Aerosols (complex refractive indices)
- Instrumental noise
- ILS

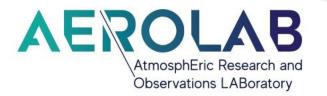








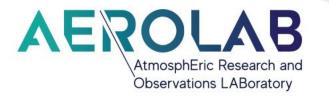
Example Plots of Errors and AVKs



Summary of DOFS and Errors

- Detector 1: the combination of bands 2 & 3 represents an optimal compromise:
 - Provides as much information as using all 4 bands (DOFS ≈ 2.16 vs 2.22).
 - AVKs and posterior errors are nearly identical → no significant loss of quality.
 - Reduces computation time and avoids spectral redundancy.
- Detector 2: more performant (DOFS = 3.15) → provides greater independent information.
- Sensitivity altitude: EM27/SUN is mainly sensitive to CO₂ in the lower troposphere, consistent with its use for total column monitoring.
- Dominant error: smoothing error → highlights the importance of a robust a priori.

	CO ₂							
	Band	DOFS		thing tainty	Total Error			
			S_smoot % max	Altitude	S_total % max	Altitude		
	Band 1: 6038.21709, 6107.88233	1,01	7.750120	0.28	7.858250	0.28		
	Band 2: 6166.21794, 6259.02458	1,93	7.18440	0.28	7.53491	0.28		
or 1	Band 3: 6293.01351, 6379.79374	1,90	7.20534	0.28	7.51155	0.28		
Detector 1	Band 4: 6463.92236, 6533.82866	0,98	7.756640	0.28	7.936460	0.28		
	Bands 1 et2	1,98	7.19798	0.28	7.61311	0.28		
	Bands 2 et 3	2,16	7.07130	0.28	7.59874	0.28		
	Bands 3 et 4	1,94	7.20179	0.28	7.55248	0.28		
	Bands 1 à 4	2,22	7.05730	0.28	7.72628	0.28		
Detect or 2	Band : 4722.0501, 5002.1574	3,15	5.93085	0.65	8.56782	0.28		



Summary of DOFS and Errors

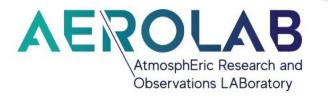
- Detector 2 is clearly more efficient for CH₄:
 - Higher DOFS (2.30 vs 1.82).
 - Sensitivity concentrated in the lower troposphere, more suitable for monitoring surface emissions.
- High information content (DOFS = 2.5) with strong sensitivity in the lower troposphere.
- Stable errors (\sim 5%) \rightarrow EM27/SUN provides robust retrievals of water vapor.
- Very limited information (DOFS = 0.37).
- Absorption lines are too weak, as clearly confirmed in the simulations.
- Although CO retrievals are often mentioned in the literature, these results show that EM27/SUN provides poor sensitivity for CO.
- Provides non-negligible information (DOFS ~0.9), with sensitivity in both the lower and upper troposphere.
- N₂O retrievals from EM27/SUN have not been addressed in the literature

	CH_4							
	Band	DOFS	Smoo uncer	thing tainty	Total un	certainty		
			S_smoot % max	Altitude	S_total % max	Altitude		
Dedect or 1	Band : 5741.2358, 6170.0748	1,82	5	51.05	5.030900	17.85		
Detect or 2	Band : 4179.1915, 4675.7673	2,30	5	53.13	5.039280	0.28		

		Band DOF		Smoo uncer		Total Error		
				S_smoot % max	Altitude	S_total % max	Altitude	
Detect or 1	H_2O	Band : 8318.12676, 8598.2340	2,5	5.000040	13.13	5.000470	7.25	
	00	Band : 4187.1464, 4326.9590	0,37	5	35.85	5.37858	0.65	
Detector 2	N ₂ O	Band 1: 4371.0723, 4442.9070	0,94	5	35.85	5	34.13	
	Z	Band 2 : 4699.14982, 4756.7622	0,69	5	34.13	5.101910	2.21	

Construction of the A Priori Covariance Matrix

Objective:

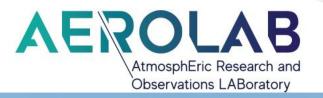

- Provide an a priori profile together with its variance and covariance matrix (including vertical correlations).
- In ARAHMIS, this matrix goes beyond variance: It introduces covariance, linking the levels and allowing the inversion to optimally weight information from both the a priori and the measurements.

Principle:

- Use AirCore profiles as the basis.
- AirCore data limited to 20–25 km altitude.
- Completed with CAMS outputs to extend up to 70 km (EM27/SUN grid).

Methodology:

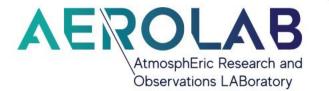
- Constructed from 19 days of data around the reference date:
 - ✓ June 13, 2023 (day of the studied spectrum).
- Provides a realistic representation of atmospheric variability during the study period.



Summary of DOFS with and without the covariance matrix

- Covariance significantly reduces DOFS → much of the raw information is redundant.
- Detector 2 remains more efficient, especially for CH₄.
- Sensitivity shifts upward, reducing constraints near the surface.
- CH₄ retains more independent information than CO₂, even with covariance.

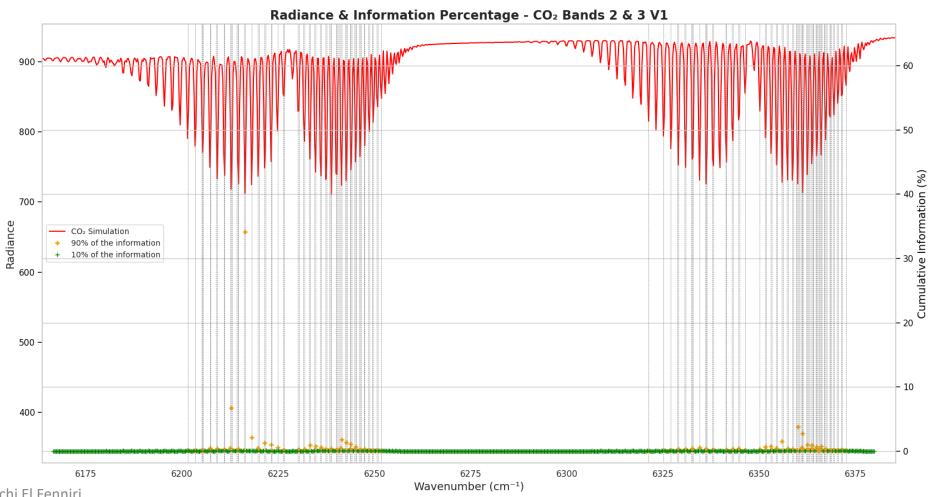
			CO2				
	Wi	thout covariance m	natrix	With covariance matrix			
Fenêtre	DOFS	S_smoot % max	Altitude	DOFS with Covariance	S_smoot % max	Altitude	
Fenêtre 1 : 6038.21709, 6107.88233	1,01	7.750120	0.28	0,440	3.26277	0.275	
Fenêtre 2 : 6166.21794, 6259.02458	1,93	7.18440	0.28	0,979	1.88078	13.13	
Fenêtre 3 : 6293.01351, 6379.79374	1,90	7.20534	0.28	0,980	1.88071	13.13	
Fenêtre 4 : 6463.92236, 6533.82866	0,98	7.756640	0.28	0,508	2.91026	0.275	
Fenêtre 2 et 3	2,16	7.07130	0.28	0,997	1.87477	13.13	
			CH4				
Fenêtre : 5741.2358300, 6170.07483765	1,82	5	51.05	1,099	0.06545	21.81	
			CO2				
Fenêtre CO2	3,15	5.93085	0.65	1,047	1.82914	13.13	
			CH4				
Fenêtre CH4	2,30	5	53.13	1,424	0.060426	21.81	
	Fenêtre 1 : 6038.21709, 6107.88233 Fenêtre 2 : 6166.21794, 6259.02458 Fenêtre 3 : 6293.01351, 6379.79374 Fenêtre 4 : 6463.92236, 6533.82866 Fenêtre 2 et 3 Fenêtre : 5741.2358300, 6170.07483765 Fenêtre CO2	Fenêtre DOFS Fenêtre 1: 6038.21709, 6107.88233 1,01 Fenêtre 2: 6166.21794, 6259.02458 1,93 Fenêtre 3: 6293.01351, 6379.79374 1,90 Fenêtre 4: 6463.92236, 6533.82866 0,98 Fenêtre 2 et 3 2,16 Fenêtre: 5741.2358300, 6170.07483765 Fenêtre CO2 3,15	Fenêtre DOFS S_smoot % max Fenêtre 1: 6038.21709, 6107.88233 1,01 7.750120 Fenêtre 2: 6166.21794, 6259.02458 1,93 7.18440 Fenêtre 3: 6293.01351, 6379.79374 1,90 7.20534 Fenêtre 4: 6463.92236, 6533.82866 0,98 7.756640 Fenêtre 2 et 3 2,16 7.07130 Fenêtre : 5741.2358300, 6170.07483765 1,82 5 Fenêtre CO2 3,15 5.93085	Fenêtre 1 : 6038.21709, 6107.88233	Fenêtre Penêtre DOFS S_smoot % max Altitude DOFS with Covariance Fenêtre 1: 6038.21709, 6107.88233 1,01 7.750120 0.28 0,440 Fenêtre 2: 6166.21794, 6259.02458 1,93 7.18440 0.28 0,979 Fenêtre 3: 6293.01351, 6379.79374 1,90 7.20534 0.28 0,980 Fenêtre 4: 6463.92236, 6533.82866 0,98 7.756640 0.28 0,508 Fenêtre 2 et 3 2,16 7.07130 0.28 0,997 CH4 Fenêtre: 5741.2358300, 6170.07483765 1,82 5 51.05 1,099 Fenêtre CO2 3,15 5.93085 0.65 1,047 CH4 CH4	Fenêtre DOFS S_smoot % max Altitude DOFS with Covariance S_smoot % max Fenêtre 1: 6038.21709, 6107.88233 1,01 7.750120 0.28 0,440 3.26277 Fenêtre 2: 6166.21794, 6259.02458 1,93 7.18440 0.28 0,979 1.88078 Fenêtre 3: 6293.01351, 6379.79374 1,90 7.20534 0.28 0,980 1.88071 Fenêtre 4: 6463.92236, 6533.82866 0,98 7.756640 0.28 0,508 2.91026 Fenêtre 2 et 3 2,16 7.07130 0.28 0,997 1.87477 CH4 Fenêtre: 5741.2358300, 6170.07483765 1,82 5 51.05 1,099 0.06545 Fenêtre CO2 3,15 5.93085 0.65 1,047 1.82914	

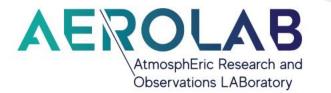


 (CO_2)

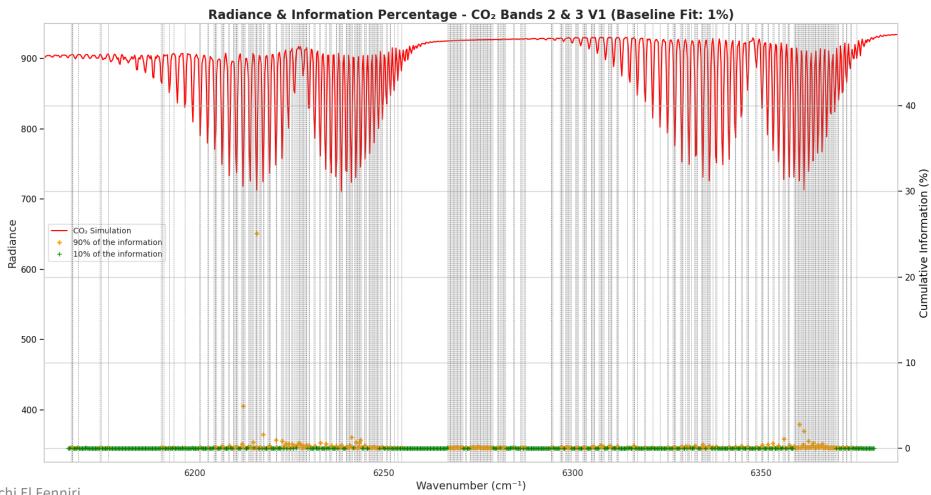
CH₄

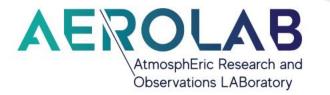
H₂O


Channel Selection

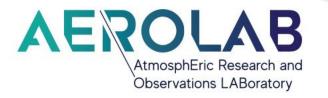


Channels and corresponding percentages





Channels and corresponding percentages

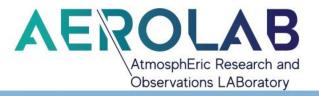

38

Summary of the channels

- Without baseline freedom:
 Fewer channels, but more concentrated and reliable → information is better attributed to the gases.
- With 1% baseline freedom:
 Much higher number of channels, but with redundancy and dilution of the real information (baseline compensation).
- Indicates where to find information by molecule and by bandwidth (LB)

CO_2							
Bands	Number of channels with 90% information	Number of channels with 90% information (Baseline fit = 0.01)					
Band 1	48	170					
Band 2	73	177					
Band 3	69	165					
Band 4	48	162					
Bands 2 & 3	145	370					
	CH ₄						
Band CH₄	42	394					

Hajar El Habchi El Fenniri COCCON MEETING OCtober 2nd 2025



Conclusion

- Coupling bands 2 & 3 for CO₂ confirms the PROFFAST choice (Detector 1).
- The PROFFAST choice for CH₄ is also validated (Detector 1).
- With Detector 2, an additional degree of information is obtained for both CO₂ and CH₄.
- The selected H₂O band (Detector 1) matches PROFFAST → choice confirmed.
- CO shows very poor sensitivity (DOFS ≈ 0.37), not usable.
- N₂O provides non-negligible information (DOFS ≈ 0.9), rarely explored.
- The covariance matrix reduces DOFS but removes redundancy and introduces vertical correlations.
- Without baseline freedom: fewer but more reliable channels. With 1% baseline freedom: more channels but redundancy and dilution.

Perspectives

- Extend H₂O analysis (two detectors, multiple bands).
- Explore the potential of N₂O retrievals.
- Automate ARAHMIS for daily full-spectrum inversions and compare outputs with PROFFAST.

 (CO_2)

CH₄

(H₂O)

Thank you for your attention

