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Abstract

The numerical methods of the Karlsruhe Simulation Model of the Middle Atmosphere (KASIMA)
are described in detail. KASIMA consists of three major modules: The meteorological module
integrates the primitive meteorological equations in time. Itis driven by the net heating rate that
Is computed using the absorbtion of ozone and molecular oxygen in the UV spectrum and of
CO,, O3, and HO in the near infrared. The chemical module consists of 58 chemical species
and families which are involved in 101 bi- and termolecular reactions, 39 photodissociations,
and 10 heterogeneous reactions taking place on surfaces of polar stratospheric clouds (PSC)
and on liquid sulfuric acid aerosols.

Das Karlsruher Simulationsmodell der mittleren Atmosphare
KASIMA, Version 2

Zusammenfassung

Die numerischen Algorithmen des Karlsruher Simulationsmodells der mittleren Ati@@sph
(KASIMA) sind detailliert beschrieben. KASIMA besteht aus drei Hauptkomponenten: Die
meteorologische Komponente integriert das meteorologische Grundgleichungssystem in die
Zeit. Es wird von einem Strahlungsmodell angetrieben, das die Absorption von UV Licht durch
Ozon und molekularen Sauerstoff und den Strahlungsaustausch im nahen Infrarot duych CO
O; und H,O beschreibt. Die chemische Komponentetioksichtigt 58 chemische Spuren-
stoffe und Familien in 101 bi- und termolekularen Reaktionen, 39 Photolysen und 10 hetero-
genen Reaktionen auf Obérthen polarer Stratosatenwolken (PSC) undifssiger Schwe-
felsaureaerosolen.
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1  The Meteorology

The atmosphere is a shallow envelope of compressible gas surrounding an approximately spher-
ical, rotating planet. The equations of motion in a rotating frame for such a gas are well known,
but in their most general form they are far more complicated than necessary or desirable for
large scale meteorological phenomena considered by this model. Scale analysis shows that sev-
eral simplifications to the equations can be made. In particular, the vertical momentum equation
can be replaced by hydrostatic balance, the Coriolis force associated with the horizontal com-
ponent of the earth’s rotation vector can be neglected, and the distanae any point in

the atmosphere to the center of the earth can be replaced by a meanaradins resulting
equations are called the “primitive equations”:

1.1 The Differential Equations

The model is based on the full set of the primitive equations with a logarithmic presasner-
tical coordinate. Following the notation éfolton [1975] the horizontal momentum equation,
the thermodynamic equation, the hydrostatic equation and the continuity equation are:

D_’ — — —

EOh X G+ YV, — F =0 (1.1)

Dt

DT K

0® RT

il 1.3

0z H (1.3)
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VU + — P _ (1.4)
po Oz

Equationl.1can be decomposed into its zonal and meridional component yielding:

Du utan ¢ 1 00

— — — —F = 1.
Dt <f+ )v+acosg08>\ »=0 (1.5)
Dv utan ¢ 10d

= 2T _F =0 1.6
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Instead of having two prognostic equations for the horizontal velocity vector components (equa-
tions 1.5, 1.6) two equivalent equations for the scalar quantitjes: k- ﬁpxﬁh (the relative
vorticity) andD = ﬁp-ﬁh (horizontal divergence) can be obtained by applﬁnﬁpx andﬁp-

on equationl.l. From the horizontal momentum equatibri in advection and flux form the
following alternative sets of equations are derived:

1. For the advection form it is convenient to rewrite the advection term in equatiarsing
equationA.2 or A.5:

T L/ N R T (A DS e
vh-vah:Vp 5 —UhX(vaUh):Vp E —l—Ckxvh (17)

The vorticity- and divergence equation thus become in advection form:

o = L T

and

D Gt Pt Ty 0?2 ey (B)] 20 (1.9)
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2. Equationl.7 becomes for the momentum flux:

_Q
Vp - UpUp, = U, - vpﬁh + _’hvp U, = Vp (%) + Ck x Uy, + Dy, (110)

so that the vorticity and divergence equations become in flux form

i = L e = 1 Opow . _,

5 F V(G N+ k- Vpx [% (092 h+Dvh—F] =0 (1.11)
and

oD - - L = |1 0pwty R =, AN
5~k V(¢ NE A+, [po o+ D, F] + V2 [cb + ( 5 )| =0.12)

1.2 The Spectral Representation

The model is based on the vorticity equatibfiland the divergence equatiarl2in flux form,
the thermodynamic equatian2 in flux form, the hydrostatic equatioh3, and the continuity
equationl.4. Equations for the spherical harmonic coefficients are obtained by multiplying the
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equationsl.11, 1.12 1.2, 1.3 and1.4 with P™(u)e "™ and integrating over the sphere (see
equationA.25):

ot 4dwa
10

P (e "™ dA\dp + (F)™ (1.13)
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In equationl.2Q ~ is the conversion factor between the temperature and the potential temper-
ature and is defined by equati@ri13
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Using equation#\.22, A.26 andA.27 the vorticity equatioriL.13and the divergence equa-
tion 1.14can be written as:

ac // imBy B () + KoHy ) gy gy, 4 () (1.21)
47m MQ) !
+1 27
oDy //meUPm(u) + Ky H (1) A I\
ot  4rma (1—p?) 8
n i 1 +1 27
m —mA m
dma? /1 o/ l ] (k)e D+ (Fo), .

The equationd.21, 1.22 1.15 1.16 and1.17are a complete set of equations for the model
variables(™(t, z), Di(t, z), T (t, z), ®(t, z), andW (¢, z),

In order to compute<y (A, i, 2), Ky (A, i, 2), and K¢ (A, i, z) in equationsl.21, 1.22 and
1.15the values foC (A, u, z), D(A, u, z), andT'(\, i, z) can immediately be obtained from the
transformation equatiof.24. U (A, i, z) andV (A, u, z) can be computed from equatiohd 08
and1.110by means ofA.20, A.22, andA.25 yielding:

U=ad, 3 oy mPR BT () = G ()] e (1.23)
V=a) ) oo +1 (D3 H () = im G P ()] e (1.24)

n= Om—fn

The spherical harmonic coefficients of the horizontal flux terms in equati&hare computed
using equations.26 andA.27:

+127
I/ ! (aUT(,X’“ )4 (1- M)%) P (u)e "™ dAd

- / / ﬁ(imUTPy(MHVTH;”(u))eZmAdAdu (1.25)

The first integral of the solution of equati@n27 vanishes because all the terids, K, and
VT in the equationd.21, 1.22 and1.25vanish fory = +1.
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1.3 The Numerical Methods

1.3.1 The Horizontal Truncation

A fully triangular truncation scheme is used in the model: All series are truncated after the
degreen = N, suchthat) < n < N, and—n < m < n.

The integration with respect td is done on an equally spaced grid with at lefst; =
3Nmax + 1 gridpoints [e.gMachenhauer and Rasmussé&n72].

The integrals with respect tp are computed using Gaussian quadrature. The Gaussian
grids are obtained from the zeros of the Legendre polynoﬁﬁg,lid, whereN,,q is the number
of gridpoints in meridional direction. The Gaussian weights; at gridpoint: are obtained
from equationl.115[e.g.Korn and Korn 1968]). The integrals with respect toare therefore
approximated by:

+1 Jgrid

[X (= 3" X(u)An, (1.26)

-1 1=1

1.3.2 The Vertical Discretization

The hydrostatic equation1.16 is integrated vertically from the lower to the upper bound-
ary in order to compute the geopotential. If subsckiptenotes the actual model laydr; is
computed by:

®,— P, R
kT’“ = 205 (T + Tr) (1.27)

At the lower boundary the actual temperature and geopotential field is taken from the ECMWF
consolidated dataset. These fields are interpolated linearily in time in order to be applied for the
actual timestep.

The continuity equation 1.17 is integrated downward from the upper boundary to the lower
boundary in order to compujgw. At the upper boundary it is assumed that 0:

1 Witos = Wi—os

=_D 1.28
oo s k (1.28)
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The vertical flux termsin 1.18 1.19 and 1.20 are approximated by:

Ipowar  Wiyos(arr + ax) — Wios(an + ap1)
0z 2p0 Az

(1.29)

wherea = {U, V,~T}.

1.3.3 The semi-implicit time integration scheme

The time integration scheme is adapted from the semi-implicit scheme developtaltmer

and Williams[1980]. All the terms that describe fast propagating internal gravity waves are
treated implicitly, whereas for the other terms an explicit leapfrog scheme is applied. The terms
being treated implicitly are the Laplacian of the geopotential in the divergence eqlaiitand

the vertical heat flux terms in the thermodynamic equatidr. Consequently, the continuity
equation and the hydrostatic equation have to be treated implicitly. One entire column of model
layers has to be computed simultaneously, because the continuity equation and the hydrostatic
equation are integrated from the top to the bottom and vise versa, respectively. Therefore the
equations have to be written in matrix form. Since the vertical velocity is defined between two
model layers, the vertical grid is now defined as being twice as large as the vertical model layers,
where the vertical velocity is defined on odd gridpoints and the other variables are defined on
even gridpoints.

Because the Laplacian of the geopotential is involved in the semi-implicit formulations, all
derivations shown in this section have to be done in terms of the spherical harmonics of the
variables, which is straight forward because of the linearity of the equations discussed here. As
long as subscripts in the equations describe the vertical model layer considered, their meaning
Is changed for convenience in this section: even subscripts denote the variable is defined on the
model layer and odd subscripts denote their definition between the model layer.

The hydrostatic 1.27and the continuity equation1.28 can be written in matrix form with
these conventions:

o = Agp T + P, (1.30)

Wak—1 = Bag—121Da (1.31)
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In equationsl.30and1.31the subscripté and! denote the vertical model grid with< k,[ <
kgria, Wherek,,;q is the number of model layers ad, is specified from the lower boundary

condition.

From equationd.27and1.28the matrix equation$.30and1.31are explicitly:

B RAz
- 2H

= Az

(10

1

2

2 2
Po2  Pos  Pos
0 pos pPos

T
T,
Ts
+
0 T2kgrid_2
i Tzkgrid L
PO2kyia—2  PO2kg.iq
PO2kyia—2  PO2k,.iq
PO2kyia—2  PO2kgiq
PO2kyiqa—2  PO2kg.iq
0 PO2kyia |

®* is specified from the lower boundary condition as:

B RAz

Ps
2H

@S
@S
@S

@S
@S

(1.32)

(1.33)

(1.34)

whereT, and®, are the lower boundary temperature and Geopotential, defined one model layer
below the lower boundary.

The vertical heat flux terms are linearized for the purpose of the semi-implicit treatment by
separating the temperature:

Ty 2,1) = T7(2) + T'(A, i, 2, 1)

The linearized part of the vertical heat fluk,

1 oyWT*
Ki=——9
YPo

0z

- DT™

(1.35)

(1.36)
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is treated implicitly, whereas the nonlinear part is treated explicitly. Using equdtiag@iequa-
tion 1.36can be written in matrix form:

* *
Ko = Yoro 1Wa1 + 15 o Doy

Vo2 L op o + Yor Ty
— W [_ +2 4940 2k]

2%k P02k A%
Yor Lo + '72k—2T2*k—2‘|
272k Pook A2
_T;k,%D?k (2.37)

+Wor_1 l—f—

Fork = kgriq, Waryr = 0 and fork = 1, 75 is taken from the reference temperature.

The Laplacian of the geopotential can immediatly be obtained in spherical harmonic coef-
ficients from equation..22

" (g (1.38)

a?

[V20y]

The semi-implicit formulation  of the divergence equatidn22and the thermodynamic equa-

tion 1.15can be derived with the matrix equations derived in this section. If the superscripts
denote the timestep and the subscripts the vertical gridpoint, one obtains for the relevant terms
of the divergence and thermodynamic equation:

DTL+1 _ _D'”f_1 K - ..
P Sk 02092 () 4 explicit terms

2At
2D G2 (At ) 4 O (1.39)
T,:‘“ — T,?f1 (1.37) ntl . n+1 A
I i ¥ (W) = 1, (D) + explicit terms
"2 (YVeuBum — Tip) (D) + 7 (1.40)
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In equation1.39the values fo®; are computed with equatithZ using the lower boundary

condition1.34 The explicitly treated terms markéd i and are defined in Sectioh.3.4

line item 6. Solving equatiori.40for 7;**! and inserting the result intb.39gives an equation
for Dt

(Ik,l — Xk,l) Dln+1 = + (Ik,l + Xk,l) Dlnil
+(20A8) V24, <T;; Lyean “))

+(2A1)V? (@;ﬂ“)

(1.39)

+(2A1) (1.41)
where
Xio = (286 (V2Ii) Ak (Yo Buo = T (1.42)

andly; is the identity matrix.

1.3.4 The Finite Difference Equations

A computational overview for the computation of one timestep is presented together with the
finite difference equations in the following list:

1. The spherical harmonics of the vorticity and the deviation from the reference temperature
T’ (see equation.35 of the actual timestep is transformed on gridpoints using equation

A.24:
Nmax
= Z G P (p)e™ (1.43)
n=0m=—n
Nmax n
D\ p) =3 > DB (p)e™ (1.44)

n=0 m=-—n

annx

= > Z T Pl (p)e™ (1.45)

n=0m=-—n
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2. The values ol/, V, andWW are computed at the actual timestep on gridpoints by means
of equationsl.23 1.24 1.28using the transformatioA.24:

Nmax

U =03 3 s [FmDIEI )~ G )] e (1.46)
Nmax

Veay 3 " +1 (D HY (1) = imG Py ()] €™ (1.47)

n=0m=—n

Wi—o5 = Wisos + porAzDi (A, 1) (1.48)

3. The non-linear term&’;; and Ky, used in the vorticity equatioh.21and in the divergence
equationl.22are computed for the actual timestep on gridpoints from equatidrsand
1.19usingl.29

Wit05(Ugs1 + Ux) — Wi—o5(Ug + Ug_1)

Ky =—(C+f)V +DU + VY (1.49)
Wiros(Virr + Vi) = Wios (Vi + Vi
Ky = +(C+ U + Dy 4 WesoalVen & ;)p A 05Ve + Vi1) (1.50)
0

4. With the separation of the temperature (equalfidst) and the implicit treatment of the
vertical heat flux associated with the reference temperattirésee Sectiori.3.3 the
explicitely treated non-linear terms of the thermodynamic equdtibt/i - are computed
using7” only in equation1.2Q The spherical harmonic coefficient&’r/)!" are then
computed using.25and1.107

rid I'rzd ! !

Jorid Torid i T P () + VIT'H!™ (1)
Ko E : E : Hj n J
() 47ra (1 —p3)

7j=1 =1

e ANA L

J, rid I(Tld
1 &8 28 W T; T
k+0.5 ’Vk-i—l k+1 + Yk k)P (Mj)e—zm)\iA/\A'uj
4 “ — 27kpor Az

n

+

=1

k}
@

<
~

1 I Wm0 (VLY + Ye-1Th—y)

zi

— = 29kp0r A%

P (pg)e” ™M ANAp; (1.51)

M
s

5. The vorticity equationlL.21is solved explicitely. Using a leap frog scheme and let the
superscript denote the timestep, one obtaines from equati@n:

(CHAt)Z‘ _ +(Ct—At>:

oAt Jorid Taria ZmKVPm( ) A\
IRV T W) —imdi AN Ay,
" 4ra ]zjl ZZ; (1-— ,uj) J
2P R K KUH(15) v pxp
471'@] 1 =1 ]) ’
+2At (F ) (1.52)
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6. The divergence- and thermodynamic equation are already discussed in Segtibihe
explicitely computed terms marked by- in equationsl.40and1.41now become:

(L39) i"l IfmeUP wi) + KvH (i)
drma 1—

=1 =1 u]

e‘zm)‘iA/\A,uj

n + 1 gmd Igmd U2 + V2

T Ara? Jz:: ; ’uj) (/Lj)eﬂm}\iA)\A/Lj
+ (Fp)" (12.53)
C= e+ Q (1.54)

1.4 Miscellaneous

1.4.1 The off-line Model

Despite integrating the primitive equations as described in Settithe off-line version inter-
polates global external analyses to the model architecture. Currently, global analyses provided
in terms of spherical harmonic coefficients on pressure surfaces are supported. A linear interpo-
lation of these coefficients is applied in the vertical onto the model pressure surfaces and in time
onto the actual model date. This model version is applied for the solution of chemical problems
when an direct comparison with measurements is requested.

Since current analysis models have an upper boundagysatkm, a hybrid or mixed model
can be used. This version combines the on-line and the off-line model using the following
alternatives:

¢ Run the off-line model up to a prescribed layer, use this layer as lower boundary condition
for the on-line model.

e Combine the on-line and off-line model by computing the tendencies of the prognostic
variables from both models as follows:

0X

+(1—a) [& (1.55)

)

87)( - 87)( Off-Line
ot ot

]On-Line
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whereX € {(, D, T} is the set of prognostic variables afd< « < 1 is the mixing
parametera is a function of pressure altitudeand the degree of the spherical harmonic
coefficient in use:

n2
a(n,z) = exp [— —2] ,whereo =
o

max 2 — Ry

,forz < z, (1.56)

Zu T Rb

anda(n, z) = 0, for z > z,. In equationl.56 z, andz, are the pressure altitude of the
upper boundary of the analysis and the lower boundary of the model, respectively. Thus,
« has a Gaussian shape centered arourd0, the global means, with a band widih

which reduces linear from.5/V,,, atz = z;, to zero atz = z,.

1.4.2 The Effects of Breaking Gravity Waves

The effects of gravity waves are implemented according to the theory of breaking gravity waves
of Lindzen[1981]. Lindzen applied the theory of internal gravity waves on a basic flow with
weak vertical shear compared to the vertical component of the gravity wavenumber vector in
an atmosphere with constant static stability. With these assumptions a simplified set of the
primitive equationsl.1-1.4 describing internal gravity waves can be solved analytically. From
the solution the following quantities relevant for the parameterization scheme can be derived
[Holton, 1982]:

12

e The breaking levet, is computed from the assumption of momentum and energy conser-

vation of an undamped gravity wave leading to an increase of wave amplitude with height
due to the decrease of density. Assuming a non-zero vertical momentum flux of the grav-
ity wave, the static becomes locally unstable at some altitude resulting in convection. This
breaking level is computed by:

% = 3H In (#) : (1.57)
where

N 1/3
U= (2 u'w’ ?) (1.58)

is a measure of the wave amplitude,s the component of the horizontal basic flow
parallel to the horizontal wavenumber vectdyy’ is the vertical momentum flux devided
by the basic state density, & is the absolute value of the horizontal wave number vector,
c is the phase velocity of the gravity wave, aNds the buoancy frequency.
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e The critical level is the level where the component of the basic flow parallel to the
wavenumber vector is equal to the phase velocity of the gravity wave.

e Between the breaking and the critical level the convection processes are parameterized by
vertical diffusionD and an force per unit mags parallel to the horizontal wavenumber

vector:
_kla—o)t] 1 30u/oz
D="%" [ﬁ—ia_c (1.59)
2
poND (1.60)
u—=c

wherek is the absolute value of the horizontal wavenumber vector.
The parameterization scheme described above is actually implemented as follows:

e The vertical momentum flux is an analytical function of the phase velocity and direction
of the horizontal wavenumber vector:
(¢ — co)?

—71 , (1.61)

o2

where (u’w’)o = 107 m?/s*, ¢o = 8 m/scosf, ando = /o2 + 02 with 0, =
25 m/scosf, ando, = 20 m/ssinf, is. § is the angle towards east of the horizontal
wavenumber vector.

e The absolut value of the horizontal wavenumber vector is constant:

B 21
120 km

2 (1.62)

e A spectrum of 12 independent gravity waves is implemented with three phasevelocities

(8, 16, and 41 m/s) and four directions of the horizontal wavenumber vector pointing to
the four cardinal points.

1.4.3 The Quasi-biennial Oscillation (QBO)

This section describes the implementation of a mechanistically forced quasi-biennial oscilla-
tion (QBO) of the zonal wind based on analyzed winds from ECMWF analyses to the on-line
version.

1.4 Miscellaneous 13



The quasi-biennial oscillation in the equatorial lower stratosphere around 25-30 km altitude
is described by e. gReed et al[1961]; Veryard and Ebdof1961]. From radiosonde obser-
vations it is found that the zonal wind changes from westerlies to easterlies with a mean period
of 28 (2 ) months and a maximum wind speed between +15 m/s (westerlies) and -35 m/s
(easterlies). The phase of the westerly wind moves downward with a nearly constant velocity
of around 1.2 km/month whereas the phase of the easterly wind moves slower downward with a
mean velocity of around 0.8 km/month and also not so constant in time. The QBO has an effect
on the transport and the distribution of long-lived tracers and thus on the stratospheric ozone.

An additional force has been applied to the model wind field of the on-line model in form
of a Rayleigh friction type relaxation term proportional to the difference in the zonal wind
components of the model wind and an idealized wingho. This idealized QBO wind is
derived from the ECMWF analysis of the time period from 1978 to 1994, is calculated
from the amplitudes and phases determined from a harmonical analysis of this oscillation as a
function of height and latitude. A band pass filter has been applied to suppress high and low
frequent oscillations. We used the following 5 frequencigs

v, = n - 27 /180months, (1.63)

with n =4,5,6,7,8 what corresponds to the periods from 22.5 to 45 months.

For the calculation of the frequencies the denominator of 180 has to be used, which is the
number of months in the used time period of the ECMWF analysis, to guarantee the extention
of the integration in time without an attenuation of the amplitude.

The total mean zonal force per unit mass is then calculated as follows:
Frotar = Fx 4+ y(ugpo — 1), (1.64)

where the overbar denotes the zonal average,the QBO-coefficient andpo is the zonal

mean zonal wind component of the idealized QBO. The QBO-coeffigienthe relaxation of

the QBO signal and has the dimension 1/time. It is applied as a 2-dimensional Gauss function
in height and latitude to consider the attenuation of the observed QBO, with a relaxation time
of 3 days as maximum value. Thus the QBO-coefficiebecomes:

§ = 3.7-107% - exp {—0.5 ((éz)Z + (f) ) } (1.65)

The widtho, in height is 7 km and the width,, in latitude is11°. With this set of parameters
the modelled QBO is close to that observed.
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1.4.4 The Transport Algorithm

The behaviour of atmospheric trace constituents is simulated by integrating mass balance equa-
tions for their mixing ratios in time of the form:

dq > 1 Opowq
— _V,- _ T 1.66
ot p*(0he) po 0z o ( )

whereq denotes the mixing ratio anlits sources and sinks (see sectin

The first two terms on the right hand side of equatiodtdescribe the horizontal and verti-
cal flux divergence. When reduced to an arbitrary one-dimensional problem, the flux divergence
is computed by

Oug fivos — fi—os
~ 1.67
ox Az ( )

where f = uq is the flux ofq, the subscript is the actual gridpoint and\z is the distance
between the gridpoints. The flykis computed using a two step flux corrected transport (FCT)
algorithm introduced by alesak1979]:

1. A 1. order upwind scheme fro@ourant et al [1952]:

o5 = 0.5 (Uiros + |[wivos]) @ + 0.5 (Uivos — [Uivos]) Gt (1.68)

2. An antidiffusive step based on the difference between the schemaxchnd Wendroff
[1960] and the 1. order upwind scheme multiplied by a limiter function):

At

FEGs = ®(ritos)0.5]uio5] (1 - E'u”%') (Gi41 — @) (1.69)

where the limiter functior®(r) is given byRoe and Bainef982]:

®(r) = max (0, min(2r, 1), min(r, 2)) (1.70)
with
GGl for Uitro5 = 0
Qit1 — 4
Tit0.5 = (1.71)
M for Uitos < 0
i+1 — i
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The total flux is given by
firos = fiios + iﬁ-%.f) (1.72)
In case of the known fluxef , ¢ 5 equationl.72can be inverted to computg_ g 5:

1. From the requirement thgt > 0 < v > 0 andf < 0 < u < 0 the following two
equations are obtained:

o 2; 2 26\ 2

u=+ <1+ o )1 - (1+ W)Aq) ~goadl frs0 @7
¢ 2qi11 c? 2qi11 2 2c

=g (1 - @(T)Aq> =\ 7 (1 - @(T)Aq) T (gl M/ <0 (1.74)

wherec = %, Aq = gi+1 — qi, andu, f, and®(r) are to be taken at+ 0.5.

2. The signs of the roots in equatiohs’3and1.74have to be obtained from the condition
thatu = 0 & f = 0 and are therefore determined by the sign of the terms in the
parenthesis.

When returning to the model grid defined in sectiars 1and1.3.2 the computation of the
fluxes from equatiori.72requires a finite difference scheme in the horizontal for computing
the spatial derivatives. Here centered are differences of the form

80& -~ Oli+17j — 017;_17]'
<3A>U T 2AM (1.75)
and

g’ QG g1 — Q51

— ~ 1.76
(fM)” 248 pu; (79

for an arbitrary scalar quantity, where the subscriptsand; denote the zonal and meridional
gridpoint, respectively. Any scalar or vector componerthat is required to be defined between
the gridpoint (e. ga;1.5), Is computed with the arithmetic mean of the neighboured gridpoints:

Qivos = 0.5 + ) (1.77)
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With these definitions and in order to fulfil numerically both the constrainBand that
the horizontal wind components are nondivergent (free of rotation) if the wind components are
computed from the relative vorticity (horizontal divergence), all the wind components are
recomputed by:

1. Compute the spherical harmonic coefficients of the velocity stream funétjpand the
velocity potentialy]* from the relative vorticity and the horizontal divergence with equa-
tion A.22. Transform¥ and ;" to gridpoints with equatior.24.

2. Compute the horizontal wind componetsandV by approximation of equatioris 108
andl1.110with the definitionsl.75 1.7 and1.77.

Uitos; = _<1 - /Lz)j Wittt = \IJHZZAII[Z U1 — Wi
4 X2 + Xij,;'A—)\Xi,j — Xi—1,j 1.78)
Viiios — Wit1541 — \IleiglA—)l\— Winrj— Wiy

3. Analogeous to equatioh.28 the vertical velocity is computed from downward integra-
tion of the continuity equation:

Wi—05 = Witos + porAzD; j i, (1.80)

wherek denotes the index of the vertical gridpoint. The horizonal divergengcg, is
computed fronJ anV obtained from equationk.78and1.79

Uivos; —Ui—os; | Vijros — Vij-os
D, = ) ’ ’ : 1.81
J a(l — p?); AN + alAp; ( )

where the vertical gridpoint indexis omitted.

1.4.5 Domain filling Trajectories

When computing trajectories the basic problem is the computation of the change of the trajec-
tory position vector(z, y, z, t), a function of position in three-dimensional space and time, in
time by integrating the 3-D velocitie&r, t) along a trajectory path:

D7

o = (), (1.82)

<
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wherer’ is the trajectory position vector andis the 3-dimensional velocity vector. Thus, at
each timestep eithef(\, i1, z) given at the gaussian grid or its spectral representation in terms
of ', D" and the vertical velocity (see sectidnd) has to be interpolated to the trajectory
position vector, i. e.:

U 1, 2) == (((2), Dy (2), W (2)) — 0(7) (1.83)

The interpolation is done using the spectral transform technique in the horizontal and linear
interpolation in the vertical:

1. Transform the vertical velocityV, computed in equatiofi.28 on the Gaussian grid to
spherical harmonicB"(z).

2. Compute the normalized spherical harmonits(.)e*™* at the horizontal components
of the trajectory position vector, whef&" () is computed based on the recurrence rela-
tion A.13, starting with

m/2

Qu(u) = (=1)"2m — D! (1= p2)"", (1.84)

where the notation!! denotes the product of all odd integers less than or equéglRoess
et al, 1988].

3. Compute the 3 components @ft the horizontal components B8based on the transfor-
mationsl.46 1.47for U andV and A.24 for W using the spherical harmonics computed
in step?2.

4. Interpolate thd/, V, andW computed in ste linearily to the vertical component of
yielding to the velocity vector at the trajectory position vector at timestee. v(7(t), t).

The equation of motiof.82is integrated in time using the Euler foreward scheme:

r(t+1) —r(t)

= (F(t),1) (1.85)

1.4.6 The Balance Equation

Assuming a horizontally non-divergent flow the divergence equalidr?(yields the nonlinear
balance equation:

Vo [(f + V) V, 0| = V2 [cb + % (%qfﬂ (1.86)
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Equation1.86is a diagnostic relationship between the geopotedtiahd the velocity stream
function ¥ and is solved in this section to obtain a balanced flow for a given geopotential field.
The solution is obtained by linearizing equatib@6around a basic state flow, setting

U=, + (1.87)
yielding [e.g.Haltiner and Williams 1980]:

Vo [(£+V20) V0] + (f+ N?%) 6%1/’
Ot (6,,%) + 6,3\1/0 : 6,)\1;' (1.88)

Assuming in a first approximation a basic state of zero (g~ 0) equationl.88reduces
to

V2V +V,f -V, = V2 (1.89)
In order to solve the equatian89for ¥’ the following steps are applied:

1. The equationl.89is developed into coefficients of the spherical harmonics (equation
A.24):

(rV20)" + (V,f -V, @) = (Vie)" (1.90)

n

2. The variables are developed into coefficients of the sperical harmonics (egaa2i)n
Sincef = 2Qyu, the following simplifications apply fof andﬁpf:

> 20
= PO () (4.11) 0pO(p o 0_ f(u) _ & 101
7. Vol (1) (115 10f(p) (=20 22 5 V3T (1.92)
V1 — 2 a Ou a a '
The streamfunction and the geopotential may be written as:
V(A ) 2SS - n(n - A1) i prn g (1.93)

n=0m=—n
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s (1= p?) OV'(\ p)

J VP\IJ/(A ) a 8,LL
(A.24) (1 ( m m zm/\>
= v
_ <—4M m gmr O (1)
N a ;)m;n e o
(20 _72 S ()™ (1.94)
n Om=-—n
VoA ) ST Y - chmpm(u) o (1.95)

n=0m=-—n

whereH " (1) is given by equatior. 20.

3. Using the equation§.91-1.95the single terms of equatioh.90 become by means of
equationA.25: The first term of equatiofi.90may be written as:

(1939, =
+127

= / / SV PE(p)e* dAdp
T

— Z Z {\I/’m 717P0 (u)ezm)‘e_’k’\d)\du}

n=0m=-n ‘10

= Z Z {\Iﬂm (n+1)] ;/P{)(M)Pﬁ”(u)ﬂk(u)du %/ez(m—k))\d)\}

n=0m=-—n 1 0

(2 _ Z {qf”f nt1)] 5 / PP (1) P (1) P (e )du} (1.96)

SinceP? (1) = +/3u from equatiomA.18 usingA.11andA.17, the last integral in equation
1.96may be written as

5 [ PR PG P oy
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+1
A9 1
e \/55/ [Gﬁﬂpfﬂ(li) +en Py (1 )} Pf(p)dp
s}
V3ek forn=1+1
V2D VB forn=1-1 (1.97)

0 else

Combining equation$.97and1.96yields finally:

. 0
(reew)t = VB

DI yef + (1+ 1)1+ 2) 07 € (1.98)

The second term of equatidn90may be written as:
— — / k
(W )=

+127

n Om=—n _10

(A.23) _é = 1k 1 k k
& anzo{qf /H P()du}

e}

(A.20) _fz {\I,/k 2/ nek  PE () = (n+ D)eb PE ()] Pz'“(u)du}
n=0
A D e - w4 2 99

wheree]" is defined by equatioA.21

. Inserting equationd.98 and 1.99 into equation1.90 yields a set of equations for the
spherical harmonic coefficients &f and® of the form:

T Wy + T, = (Vi)™ (1.100)

n

for —oo < m < o0, |m| < n < oo and wherd”" are computed from equations98and
1.99 In equationl.100I"7" is defined by

= ge (1-n?) (1.101)

using the equations.91and1.92
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The equationd.100can numerically be solved fo’ seperately for the orders and simulte-
neously for the degreesof the associated Legendre polynomials truncating the infinite number
of equations aftern = M andn = N. Since the equations.100can be solved for a given

m only if the resulting number of equations foeris even, the triangular truncation scheme de-
scribed in Sectiori.3.1cannot be applied here. Therefore a rhomboidal truncation scheme is
used setting/ = 0.5N.c andN = |m| + M, ensuring thafl/ is odd.

1.4.7 List of Symbols

a Radius of the earttu = 6366 km)
Cp Specific heat of dry air at constant presstire= 1005 J kg~ K1)
D Horizontal divergence

D = ﬁp'gh:6§X
1 Ou 1 Oucosyp

acosgoﬁ—i_acosgp dp
1 ou 10V

_— - 1.102

a(l — p?) 8)\+a8,u ( )

Do

Dr time rate of change af following the motion

1.The advection form:
Da da  _ = Oa
E == a‘th'vaé—Fwa
Jda v Oa voa Oa
3t acospdr adyp Vs
oo U da Voo Ja
o Taa—mor Taop Ve

2.The flux form is obtained using equatiGrv:

(1.103)

Da  da o 1 Opowar
Dr = oo Yt

O 1 <8ua Jva cos gp)
- +

ot * acosp \ O\ Op

1 dpowa

% 0z
8704_'_ 1 8Ua+181/704+i8p0w04
ot a(l—p?) ON  a Ou  po Oz

(1.104)
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grid
ng’d

kg'rid

] .

Eal

Nmax

Po

T (2)

Coriolis Parameteff = 2Q sin ¢ = 2Qu)

Additional forces in zonal and meridional direction, respectively

Fe =k V,xF (1.105)
Fp =%, F (1.106)
Atmospheric Scale HeightH = 7 km)

No. of zonal gridpoints

No. of meridional gridpoints

No. of model layers

Zonal unit vector

Meridional unit vector

Vertical unit vector

Maximum degree of associated Legendre polynomials

Pressure

Constant reference pressygg = 1013 hPa)

Temperature

Reference temperature (US-Standard Atmosphere)

Net Heating Rate

Gas constant of dry a{iR = 287.04 J kg~' K1)

Zonal component of velocity

_ L ox 1ov 1 ox V1I-p20v (1.107)
acospON  adp  ay1— p2 o\ a Ou '
U = wucosyp
100 cospiw
T aoA\ a Op
1oy (1—p?)ov
- A il 11
a O\ a O (1.108)
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<L

At

AN

24

Meridional component of velocity

~ 1ox 1 8@_@8)( 1 ov
U_E%+a005@ﬁ_ a  Op  ayI—pZor
V. = wcosyp
| cospox 10V
a Op aod\
_ (=pfox 10V
a Ou  ad)

Three dimensional velocity vecté = ui + vj + wk)

Horizontal velocity vector on pressure surface

Vertical component of velocity
W = pow

Vertical coordinatéz = —H In (p/po))

(1.109)

(1.110)

(1.111)

(1.112)

Conversion factor between temperature and potential temperature:

0 =~(2)T = exp (%) T

Horizontal velocity potential on pressure surface (see equatidid

Timestep
Distance between 2 model layers

Distance between 2 zonal gridpoints

AN =

Lgria
Gaussian weight at = p;
2
(1= )" [Py (1))

Geopotential

Api =

1. The Meteorology
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(1.114)

(1.115)



Po

o)l

o1

Geographical latitude

Ratio of gas constant over specific heat at constant pressure of dey air
R/cp)

Geographical longitude

Alternate meridional coordinate = sin(p)
(= sin g (1.116)

Vertical component of velocity stream function (see equatidi 7)
Basic state densitfp, ~ exp(—z/H))

Absolute value of angular velocity of the eafth= 2rday !
Angular velocity of the earth

Relative vorticity

=

¢ = k-V,xt), =V

B 1 Odv 1 Oucosy
"~ acospd\  acosp O
1 ov 10U
= — - - 1.117
a(l —u?) 0N adu ( )
Absolute vorticity(¢, = ¢ + f)
Gradient of any scalar on constant pressure surface
= 1 aOé—,»‘ 1 8(1—,»
Vi = s N by
1 » VI —1Z0a-
_ a i da (1.118)
ay/1 — p? O\ a Ou
Divergence ofi = ai + %]' on pressure surface
ﬁpd’ _ 1 Oay 1 Oag,cose
acosp ON  acosp Oy
1 1 v1—p?
- Ooy | 100pvL = p (1.119)

av/1 — p? 0N +a o
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V,xa Vertical component oW x &, @ = ai + ] on pressure surface

=

Voxd = k-Vxa

1 Oay, 1 Oaycosp

acosp ON  acosp Oy
1 day  10an/1—pi?

= — 1.120
ay/1—p?2 0N« ol ( )
ﬁia Horizontal Laplacian ofr on pressure surface
62& = V,-V,a

B 1 Q% n 1 9 o da
© a%cos2p 0N a2 cosp O S0(’9g0
1 Pa 10 da

= —— (1—-p?)— 1.121

a?(1 — p2) ON? * a?ou [( a )au] ( )
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2  The Chemistry

2.1 General
Any chemical reactiom can be written as

Z vy Reactant; — Z iy Product; (2.1)

=1 i=1

wheren denotes the number of the specigg.andy;; represent the stoichiometric coefficients
of the reactants and products, respectively. The rate of the reddibtine timet is defined
as the product of the concentrations of the reactaiits which are involved in the reactiah
multiplied by the reaction rate constdnt

Tl<t> = k’l ﬁc;llﬂ (t) (22)

Since most of the species in the atmosphere are produced and destroyed in more than one
reaction the production and loss rate of a specissdefined by the sum of the rates of the
reactions in which the speciéss produced or destroyed:

P(t) =3 par(t) 2.3)
=1

Lz(t) = f: Viﬂ“l(t) (24)
=1

The time development of the concentratigrof a species due to chemistry is given by

Gcl(t) . ’
22 = Bt) - L)) (2.5)

whereL;(t) denotes the loss frequency which is obtained by dividing the losgsétgby the
concentration of the specieés

Li(t) = = (2.6)
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The photochemical lifetime; is defined by the reciprocal of the loss frequency.

(2.7)

2.2 The Numerical Solver in KASIMA

The chemical scheme uses the family concept, which groups related chemical species with
short photochemical lifetimes together in order to remove pairs of large reaction rates from the
system and thus to increase the chemical timestep. The photochemical lifetime also determines
the species which have to be transported. If the photochemical lifetime is large compared to the
characteristic time constants for transport the species have to be transported separately whereas
the species with a short photochemical lifetime and large production and destruction rate can
be grouped together. Within these families the exchange rates are large but the overall rates of
exchange between the families are small. Therefore, only the family itself has to be transported.

The method to calculate the concentrations of the advected and non-advected species in
KASIMA is as follows:

The changes of the concentration of the chemical species are obtained by the method of
operator splitting at the model gridpoints. First, the tendencies of the long-lived tracers due
to transport are calculated (see sectlofi.4). Then, the chemical tendencies are calculated in
order to modify the long-lived tracer distributions and to get the concentrations of the short-lived
species.

The concentrations of the transported (long-lived) species are calculated via an iterative
Euler backward approximation of the chemical differential equatibB) (with the transport
timestepAt¢ and the iteration numbér (superscript) withe = 1, ..., (K — 1):

ek —ci(t) :

S Y = P(t) — L.(H)e(t 2.8
N (1) = LiD)ei(?) (28)

k+1

¢ —alt) k 'k Kk

Y pk LR 2.9
At i TG (2.9)

The solution fork + 1 = K is considered as the+ At solution of the Euler backward approxi-

mation. Within the iteration the concentrations of the constituents of the families, the diagnostic

species, are calculated via the analytical expression of the differential equation first:

ci(t+ At') = Z]?Eg + (Ci(t) — ?Ei;) exp_L;(t)At/ (2.10)
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Due to numerical reasons we split the integration of the diagnostic species substeps. In-
termediate solutions for all diagnostic species are calculated successively with the tithéstep

= At/(N = K). Sensitivity tests performed using a box-modeuhnke and &h, 1995] show

that it is adequate to tak& = 3 and N = 5 to coincide with the results of the accurate box
model simulations. Due to the finite number of iterations the iterative solution to the calculation
of the concentration of the long-lived and short-lived species is not exact and some deviation
from mass conservation may occur. Thus, to ensure mass conservation a scaling factor rep-
resenting the ratio of the concentrations of the family constituents to the family concentration
has to be applied. The scaling factor of each family member is defined by dividing the family
concentratiort ., by the sum of the concentrations of the individual members.

Cfamily
ac= ———— 2.11
G ) (241

2.3 The Chemistry Scheme

For the purpose of modeling the behavior of the stratospheric ozone with KASIMA a detailed
chemistry scheme was developed. The scheme includes the gas phase reactions qf the HO
NO,, CIO, and BrQ, families and the oxidation of methane as well as a parameterization of
heterogeneous reactions on aerosols. The scheme consists of 58 chemical species and families
which are involved in 101 bi- or termolecular reactions, 39 photodissociations, and 10 hetero-
geneous reactions on liquid sulfuric acid, nitric acid trihydrate (NAT) and ice.

2.3.1 The Chemical Constituents

The species involved in the reactions are divided into two groups, the prognostic species which
are transported and the diagnostic species.

Prognostic Specie®iagnostic Species
H,O Os

H,O, O(*P)

N> O5 O('D)

HONO OH

HNO; H

HO,NO, HO,

N,O N

CH, NO

2.3 The Chemistry Scheme 29



Prognostic SpecieBiagnostic Specigs
CO NO,
CH,O NO;
CH;OO0H CH;0,
CH30,NO, Cl

Cly ClO
OCIO Cl,0,
HCI Br
HOCI BrO
CINO, HO,
CIONG,
BrCl
HBr
HOBr
BrONG,
O,

NO,
ClO,
BrO,
NO,

Cl,

Br,
H,SO,

The concentrations of the most important source gases for the @@ BrQ.-radicals in
the stratosphere (i.e. GBI, CH;CCl3, CCl,, CFCk, CRCl; and CHBr) are prescribed as a
function of latitude and height according to 2-D-model results.

Trace species with constant mixing ratios:

N = 0.78 x [M] (2.12)
[0,] = 0.21 x [M] (2.13)
[CO,) =3.5x 107" x [M] (2.14)
[Hy] = 5.0 x 1077 x [M] (2.15)

[M] denotes the air concentration.
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2.3.2 The Gas Phase Reactions

The following gas phase reactions are included in the model. The rate constants are taken from

the compilation oDeMore et al[1997].

No. |Reaction Rate Constant

R.1 |O(GP)+O(P) +M — Oy + M |k = 4.70 x 10733(T'/300) 20

R.2 |OGP)+ 0, +M — O3+ M ko = 6.00 x 1073%(7"/300) 23

R.3 |O(P) + 03 — O, + O, ks = 8.00 x 10712 exp(—2060/T)

R.4 |O('D) + Ny — O(°P) + N, ky = 1.80 x 107" exp(110/T)

R.5 |O('D) + Oy — O(*P) + O, ks = 3.20 x 10~ exp(70/T)

R.6 |O('D) + H,O — OH + OH ke = 2.20 x 10710

R.7 |O('D) +H, — OH+H by =1.10 x 10710

R.8 H+0O,+M — HO, + M kso = 5.70 x 107%2(T/300)~ 6
ks 0o = 7.50 x 1071

R.9 [H+ 03 — OH+ 0, kg = 1.40 x 1071 exp(—470/T)

R.10/H + HO; — OH + OH kip = 6.50 x 107!

R.11/H + HO; — Hy + O; kip =1.20 x 1071

R. 12/H + HO;, — H,0 + O(®P) k1o = 4.00 x 10712

R. 13/0(°P) + OH — O, + H ki3 = 2.20 x 10~ exp(120/7)

R. 14/O(3P) + HO, — OH + O, k14 = 3.00 x 10~ exp(200/7)

R. 15/ OH + HO; — H,O+ O, ks = 4.80 x 10~ exp(250/T)

R. 16/OH + O3 — HO, + O, kg = 1.60 x 1072 exp(—940/T)

R. 17 OH + H;O, — H;0 + HO, kiz = 2.90 x 1072 exp(—160/T')

R.18OH+ H; — H,O+H kg = 5.50 x 1072 exp(—2000/T")

R. 19/HO; + HOy — H,05 + Oy k19 = 2.30 x 10713 exp(600/T)

R.20HO; + O3 — OH+ O, + Oy |kyg = 1.10 x 10~ * exp(—500/T)

R.21/0('D) + N;O — Ny + O, ko = 4.90 x 10711

R.22/0('D) + N,O — NO + NO ks = 6.70 x 10711

R. 23N + O, — NO + O(3P) koz = 1.50 x 10~ exp(—3600/T")

R. 24N +NO — N, + O(®P) oy = 2.10 x 10~ exp(100/T)

R. 25 O(®P) + NO, — NO + O, kos = 6.50 x 10712 exp(120/T)

R. 26|03 + NO — NO, + O, kog = 2.00 x 1072 exp(—1400/T)

R. 27/NO + HO;, — NO, + OH kor = 3.50 x 1072 exp(250/T)

R.28/OH+ NO; + M — HNO3 + M |kyg o = 2.50 x 1073%(7"/300) 44
kog.co = 1.60 x 10711(T'/300) 17

R. 29/OH + HNO; — H;O + NOg3 kago = 7.20 X 107 exp(785/T)
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No.

Reaction

Rate Constant

R. 30

OH + HO;NOy; — Products(H2O + NO; 4 Os)

]{?2971 =4.10 x 10716 eXp(1440/T)
]{32972 =1.90 x 10733 exp(725/T)
k3o = 1.30 x 10712 exp(380/T)

R. 31 HO, + NO; + M — HO,NO, + M karo = 1.80 x 10731(T/300) 32
kit = 4.70 x 10712(T/300) 14

R. 32,05 + NO; — NO; + O, sy = 1.20 x 10713 exp(—2450/T)

R.33/NO, + NO; + M — N,O; + M ks = 2.20 x 1073(T/300)~39
koo = 1.50 x 10712(T/300) 07

R. 34/ N,O; + M — NO; + NO; + M ks = k3/2.70 x 10727 exp(11000/T)

R. 35HO,NO, + M — HO, + NO, + M ks = k1 /2.10 x 10-27 exp(10900/T)

R.36/OH+ NO+ M — HONO+ M ksso = 7.00 x 10-31(T/300)~26
g0 = 3.60 x 10-1(T7/300)~0

R. 37/ OH + HONO — H,O + NO, ka7 = 1.80 x 10~ exp(—390/7T)

R. 38 O('D) + CH,(+0,) — OH + CH;0, ks = 1.125 x 10710

R.39 0('D) + CH; — H, + CH,O k3o = 3.75 x 1071

R. 40 OH+ CO — H + CO, ko = 1.50 x 1073(1 + 0.6 Py

R. 41|OH + CH,(+0,) — CHy0, + H,0 kay = 2.45 x 10712 exp(—1775/T)

R. 42/OH + CH,O(+0;) — H,O + CO+ HO, kg = 1.00 x 1071

R. 43 OH + CH;00H — H,0 + CH;0, kg = 2.70 x 102 exp(200/T)

R. 44/OH + CH;00H — H,0 + CH,O + OH ks = 1.10 x 1072 exp(200/7)

R. 45 0(3P) + CHy,O — Products(OH + CO+ HOy) |ky5 = 3.40 x 10~ exp(—1600/T")

R. 46/ CH;O, + CH30, — 2 - CH,O + 2 - HO, Fag = 2.50 x 10713 exp(190/7)

R. 47|CH;0, + NO(+0,) — CHyO + HO5 + NOy | kur = 3.00 x 10712 exp(280/7T)

R. 48 CH;0,; + NO; + M — CH30,NO; + M ks = 1.50 x 1073°(T'/300) 0
Fasoo = 6.50 x 10712(T'/300) 20

R. 49 CH;0, + HO, — CH;00H + O, kao = 3.80 x 10713 exp(800/7)

R. 50| CHyO,NO, + M — CH30, 4+ NO, + M ko = kas/1.30 x 10-28 exp(11200/T)

R.51 O(*P) + ClIO — Cl + O, ks = 3.00 x 10~ exp(70,/T)

R. 52 O(3P) + OCIO — CIO + O, ksp = 2.40 x 102 exp(—960/T)

R. 53 O(*P) + HOCI — OH + CIO kss = 1.70 x 10713

R. 54/O(®P) + CIONO, — Products(OCIO+ NO,) |ksy = 2.90 x 1072 exp(—800/T')

R. 55 OH + CIO — Products(Cl + HOy) kss = 1.10 x 107" exp(120/7)

R. 56 OH + OCIO — HOCI + O, kss = 4.50 x 10~ exp(800/7T)

R.57/OH + HCl — H,0 + Cl kg7 = 2.60 x 10712 exp(—350/T)
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No. |Reaction Rate Constant

R. 58 OH + HOCI — H,O + CIO kss = 3.00 x 1072 exp(—500/T)

R. 59 HO, + Cl — HCI + Oq ksg = 1.80 x 10~ exp(170/T)

R. 60|HO, + Cl — OH + ClO ko = 4.10 x 10~ exp(—450/T)

R. 61HO, + CIO — HOCI + Oq ko1 = 4.80 x 10713 exp(700/T)

R. 62/NO + OCIO — NO, + CIO kea = 2.50 x 1072 exp(—600/T)

R.63/Cl+ O3 — CIO + O, kg3 = 2.90 x 10~ exp(—260/T)

R. 64/ Cl + Hy — HCI + H ks = 3.70 x 10~ exp(—2300/T)

R. 65/ Cl + H,0, — HCI + HO, kes = 1.10 x 10~ exp(—980/T')

R. 66/Cl+ NO; + M — CINO, + M keso = 1.80 x 10731(T/300)~20
kos.00 = 1.00 x 10710(T/300)~ 10

R. 67|Cl + CHy(+0,) — HCI 4 CH;0, ker = 1.10 x 10~ exp(—1400/T))

R. 68/ Cl + CH,O(+0;) — HCI + CO+ HO, kes = 8.10 x 10~ exp(—30/T)

R. 69| Cl + CH30,(+0;) — CIO + CH,O + HO, | kgg = 8.00 x 10!

R. 70/Cl + CH30, — HCI + CH,O + O, k7o = 8.00 x 1071

R. 71 Cl+ OCIO — CIO + CIO k71 = 3.40 x 107" exp(160/T)

R. 72/ Cl + HOCIl — Products(OH + Cly) 7y = 2.50 x 1072 exp(—130/T)

R. 73/CIO + NO — NO, + Cl kiny = 6.40 x 1012 exp(290/T)

R. 74/CIO + NO; + M — CIONG, + M ka0 = 1.80 x 10731(T"/300) 34
ki = 1.50 x 1071(T/300) 1

R. 75/ ClO + CH;0,(+0,) — Cl + CHyO -+ HO; | kirs = 3.30 x 102 exp(—115/7T)

R. 76/CIO + CIO — Cl, + O, k76 = 1.00 x 1072 exp(—1590/T')

R.77/CIO+ CIO — Cl+ O, + ClI k7 = 3.00 x 10~ exp(—2450/T)

R. 78 CIO + CIO — OCIO+ ClI k7s = 3.50 x 10713 exp(—1370/T)

R.79 CIO+ CIO+M — ClLO, + M kg0 = 2.20 x 10-32(T/300) 3
k79,00 = 3.50 x 107'2(T"/300) 1

R. 80 Cl,0, + M — CIO+ CIO+ M kso = k79/1.30 x 10727 exp(8744/T)

R. 81/ O(®P) + BrO — Br + O, kg1 = 1.90 x 10~ exp(230/T)

R. 82 O(*P) + HOBr — OH + BrO ks = 1.20 x 1012 exp(—430,7T)

R. 83 OH + HBr — H,O + Br kg3 = 1.10 x 10711

R. 84/ HO, + Br — HBr + O, kgq = 1.50 x 10~ exp(—600/T")

R. 85/HO, + BrO — Products(HOBr + Os) kgs = 3.40 x 1072 exp(540/T)

R. 86/Br + O; — BrO + O, kiss = 1.70 x 10~ exp(—800,T)

R. 87|Br + CH,O(+0,) — HBr + CO+ HO, ksr = 1.70 x 10~ exp(—800/T')

R. 88 Br + OCIO — BrO + CIO ksg = 2.60 x 107 exp(—1300/T)
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No. |Reaction Rate Constant

R. 89 |BrO+ NO — NO, + Br kgg = 8.80 x 10712 exp(260/T)
R.90 |BrO+ NOy + M — BrONO, + M | kgg o = 5.20 x 1073(T'/300) 32
kgo,00 = 6.90 x 1071%(T"/300)~%*

.91 |BrO + CIO — Br+ OCIO ko1 = 1.60 x 1072 exp(430/T)
92 |BrO+ CIO — Br + Cl + O, kg2 = 2.90 x 10712 exp(220/T)
.93 |BrO+ CIO — BrCl + O, ko3 = 5.80 x 10713 exp(170/T)
94 |BrO + BrO — Br+ Br + O, ko = 1.50 x 10712 exp(230,/T)

95 |O('D) + CCl; — CIO + Products | kg5 = 3.30 x 107 °
96 |O(!'D) + CFCk — CIO + Products |kgs = 2.30 x 10710
97 |O('D) + CR,Cly — CIO + Products |ke; = 1.40 x 10710
98 |O(!'D) + CH3Br — OH + Products |kes = 1.80 x 10710
99 |OH + CH3Cl — HyO + Products | kgg = 4.00 x 10712 exp(—1400/T)
100 OH + CH;CCl; — HyO + Products | kypo = 1.80 x 10712 exp(—1550/T)
. 101 OH + CH3Br — HyO + Products | kygy = 4.00 x 10712 exp(—1470/T)

DIXDIDDIDADDD

The rate constants of the three body reactions are calculated by

ki o(T)[M]
L+ 5w

i T M (1._‘_ lo 10(279(7«);{”] 2)—
kﬂMﬂv:(kw(ﬂ])OG ] (2.16)

The rate constant of theH + HNOj reaction is calculated by

ko (T)[M]

ko (T)[M]

(2.17)

k(M,T) = ko(T) +

2.3.3 The Photolysis Reactions

The photodissociation coefficients are interpolated from values in a lookup table. The photodis-
sociation coefficients in the lookup table are calculated by using the photonflux mdeéthof
[1992] and depend on the altitude, the zenith angle (up to 95 degrees) and the ozone column.
The cross sections have generally been taken from the compilatiRistloet al.[1997a, b]. For

the HNQ; photolysis the cross sectionsBifirkholder et al[1993] are used.

The following photolysis are included in the model:

No.|Photolysis
J. 1|0y + hv — O(®P) + O(®P)
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Photolysis

.10

.12
.13
.14
.15
.16
.17
.18
.19
.20
2]
.22
.23
. 24
.25
. 26
.27
. 28
.29
.30
. 3]
.32
.33
.3
. 35
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O3 + hv — O('D) + O,

O3 + hv — O(*P) + O,
HO+ hvr — OH+H

H,O; + hy — OH + OH
NO + hv — N + O(*P)

NO, + hv — NO + O(®P)
NO; + hy — NO + O,

NO; + hv — NO;, + O(*P)
N,O + hv — Ny + O('D)
NyO5 + hv — NO, + NOj
HONO + hv — OH+ NO
HNOs + hv — OH + NO,
HO;NO; + hvy — HOy + NO;
CQ;, + hw — CO+ O(*P)
CH,O + hv(+0;) — H +HO; + CO
CH,O+ hv — H, 4+ CO

CH;00H + hv(+0,) — CH,O + HO, + OH

CH;0,NO, + hv — CH30, + NO,
Cly + hv — CI+ ClI

CIO + hv — Cl + O(®P)

OCIO+ hv — O(*P) + CIO

Cl,Oy + hv — ClI+ Cl + O,

HCl+ hv — H + ClI

HOCI + hy — OH + Cl

HOCI + hv — O(3P) + HCI

CINO, + hv — Cl 4+ NO,

CIONO, + hv — Cl + NO;
CIONG; + hv — Cl+ NO, + O(®P)
BrO + hv — Br + O(*P)

HOBr + hv — OH + Br

BrONGQ, + hv — Br + NOs

BrCl + hv — Br+ Cl

CH;3Cl + hv(+02) — Cl 4 CH;0,
CH3CCl; + hv — 3 x Cl + Products
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No. |Photolysis

J. 36 CCly + hv — 4 x Cl 4+ Products
J. 37 CFCkL + hv — 3 x Cl + Products
J. 38 CR,Cly + hv — 2 x Cl + Products
J. 39 CH;Br + hv(+0y) — Br + CH3;0;

2.3.4 The Heterogeneous Reactions

The heterogeneous reactions included in KASIMA occur both on the surface of frozen polar
stratospheric clouds (PSCs) and on liquid sulfuric acid aerosols with an assumed equilibrium of
the particels. No microphysics of the particles is contained in the model.

The first order rate constant im'sof a species X on PSCs and aerosols depends on the
surface area A of these particles

A
khet = WZ (2.18)
with the surface reaction probabilityand the mean velocity of the species X which is given

by

8kyT’

Tmx

U= (2.19)
ky is the Boltzmann’s constant amdy the mass of the species X which is calculated from the
molar mass\/x and the Avogadro’s numbéy 4:

- (2.20)

mx

The heterogeneous scheme on sulfuric acid aerosols assumes that the aerosols remain liquid
above the ice point and that they are able to take up speciesH&N@;, HCI) from the gas
phase Carslaw et al, 1995]. By this, the surface reaction probabilities on sulfate aerosols are
calculated in dependence on the composition of the liquid aerosols. The initial surface area of
the sulfate aerosol is recalculated into mixing ratioslg®O, which are transported during the
model experiment.

The heterogeneous processes on polar stratospheric clouds (NAT and ice) are calculated by
using the conventional PSC scheme which was proposéble and McCormickl988]. To
predict when polar stratospheric clouds are thermodynamically possible the algorithm given in
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Hanson and Mauersberg¢t988] is used. Therein, the existence of NAT and ice depends on
the temperature, thBNO3 mixing ratio and the water vapour pressure. The equilibrium vapor
pressure of HN@over NAT is given by

In PyNo,e = (—2.7836 — 0.000887") In Py o + 90.8556
—26242.6/T + 0.0213885T (2.21)

with the partial pressure of water vapB,qzo. The equilibrium vapor pressure of,8 over ice
is given by

In Py, o+ = 24.306 — 6144.9/T (2.22)

At low temperatures these vapor pressures are lower than the partial pressure poHNYO
and NAT or ice is formed:

INAT] = [HNO37**] — [HNO3“] (2.23)

lice] = [HyO9**] — [H,0% (2.24)
Because polar stratospheric cloud particels can be very large the model take gas diffusion lim-
itation for NAT and ice into account. Thug.(8 is corrected by the following multiplication

factor

(2.25)

3’YTPSC)_1

f:<1+ 4l

with the radiusrpsc of the polar stratospheric cloud particel and the mean free ipatkich
can be calculated from

T
[ =228 x107°= (2.26)
p

As Steil et al.[1998] a constant concentration of 1 particle NAT par® and 0.01 particle ice
percm? [Drdla and Turcq 1991] instead of a fixed radius is assumed in order to prevent a strong
dependence on the chosen parameterization. With the number concentgatioof NAT and

ice, respectively, as given i2 23 and .24 and the radiusps¢ of these particels the surface
area of the PSC is given by

APSC = 477'7’12350’”]350 (227)
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Assuming a monodisperse size distribution the radius of NAT and ice is obtained from the NAT
and ice concentration, the molar magsof NAT [117 g/mol] and ice [18 g/mol] and the density
p of NAT [1.6 g/cn¥] and ice [0.92 g/cr¥i, respectively.

P M
Vpsc = ][\7 SCMpsc (2.28)
APpscNpsc
followed by
(1/3)
rpsc = (3‘2350) (2.29)
m

The sedimentation of NAT and ice is calculated in dependence on the radius of the particles
as given inMuller and Peter[1992]. According toWofsy et al[1990] ice-particles form on
NAT. Therefore, if the temperature is below the frost point the sedimentation velocity of NAT
is the same as for ice.

The surface reaction probabilities are taken from the compilatiddedflore et al.[1997].
The probabilities denoted witfi(7") are calculated from the scheme provideddarslaw et al.
[1995].

No. |[Reaction TH,SO, | INAT | Vice
N;O5 + HCl — CINO, + HNO3 | — 0.003 |0.03

CIONO, + H,O — HOC1 + HNO3 | £(T)  [0.001 |0.3
CIONO, + HCl — Cl, + HNO;  |£(T) |0.1 0.3

e
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HOCI + HC1 — Cl, + H,0 f(T) |01 0.3
CIONO, + HBr — BrCl + HNO; |— 03 |03
HOCI + HBr — BrCl + H,0 A1) |01 0.3
BrONO, + H,O — HOBr + HNOs | £(T)  [0.001 |0.3
BrONO, + HCl — BrCl + HNO; |— 01 |03
10 HOBr + HCl — BrCl + H,O f(T) |01 0.3
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3 The Radiation

Radiation from the sun and its subsequent absorption and reemission within the atmosphere
Is the main mechanism to drive the circulation in the atmosphere. Even the main absorbing
and emitting gases exhibit such a wealth of lines and spectral structures that within a model
it is impossible to perform exact calculations of the radiation. Therefore parameterizations
are used which summarize in some computational efficient way the properties of the radiation
processes. In this chapter first some principles of the treatment of radiation are outlined. Then
the parameterizations used within the model to determine the heating rates are described.

3.1 Some Principles and Nomenclature

3.1.1 Heating Rates

The amount of energy absorbed or released in radiative or chemical processes is expressed by
the diabatic temperature de- or increase of a certain volume of the atmosphere. In the following
the term ’solar heating’ is used for absorption of solar radiation and the term 'cooling’ for
heating terms of atmospheric infrared radiation which are negative in general but may also
contribute to heating.

The temperature change of a specific volume element and the radiative heatihgigate
given by:
h

- = A
ot cpp(z)V p (3.1)

where z is the pressure altitude (see Sectionﬁl%:, I F,dv is the flux, and the projection of
F, on a unit vectog'is given by 1,(Q)5-dA/dAdQ with I, = -—2E_— the specific intensity
of the radiation with E energy the illuminated ared) the solid angle in direction of andv

the frequency of the radiation. The orientation/bis given by the normal vector oA.

I, is given by the equation of radiation transfer (ERT):

dl,
ds

=—e,l, +e,5, (3.2)

where s is a linear coordinate in the direction of radiatigns= a, + s, is the linear extinction
coefficient composed of the absorption and scattering coefficient§,arsthe source function,
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which includes scattered and thermally emitted radiation. Often the extinction coefficient is
expressed as, = 0, - n = e,,,,p Whereo is the extinction cross section and n is the number
density of the extinguishing species, angl, is called the mass extinction coefficient. In case
of negligible scatterings, is given by the Planck function if the conditions of local thermo-
dynamical equilibrium (LTE) are fulfilled. This is the case whenever the ratio of population
densities of the quantum states of a molecule are given by the Boltzmann distribution.

With the help of eq3.2the total heating rate can also be expressed as:

I / / (e, — e,5,)dvdw (3.3)
p Jaa Jo

In a planparallel atmosphere equatin is reduced to:

or_ 1 or
ot cpp(z) 02

(3.4)

(Detailed introductions into the field of radiation transfer can be foundhandrasekhar
[1960] orGoody and Yun{1989].)

3.1.2 Solar Heating

Scattering from molecules, aerosols and clouds is the only source term within the atmosphere in
equ.3.2for solar radiation but in the middle atmosphere for the UV-radiation with 300nm

in a good approximation scattering can be neglected or included in a simple albedo ansatz. In
the ERT the source functiafi, then is zero. Eq3.3is reduced tdv = %fm Joo a1, (s)dvdw.

If in addition the total absorption cross section= 3"y ox,, is constant in the whole volume,

where X is some gas species, and again a planparallel atmosphere is assumed with a solar zenith
angley = arccos(u), equ.3.2can be simplified to give an expression for the solar flux:

F,(2) = pF; exp(—au/u/nx(Z)dZ) = uFy exp(—o,Nx(2)/1) (3.5)

whereNy is called the atmospheric column density of species X, Bfids the solar extrater-
restial flux. This formulation is especially useful in the UV and visual spectral region.

The solar heating rate may also be expressed with the definition of transmissionfunctions
T(Sl, 82):

T (s1,80) =€ S avds. (3.6)
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If the top of the atmosphere is at= ~ it follows:

d7,(z,00)
dz

hy(2) = ——pF?

) (3.7)

3.1.3 Thermal Emission of the Atmosphere

In the spectral region of the thermal emission of the atmosphere scattering can be neglected.
The earth’s atmosphere is not optically thick through the whole infrared spectrum even at the
ground. LTE conditions assuméyq is the Planck function and the strongest contributions to

the emissivity of the atmosphere are found in the lines of certain molecules. The formal solution
of the equation of radiation transfer is with= [ e, ds then given by:

L(s) = L(0) - e ™ + / L dr! (3.8)

With the transmissionfunctiorig (s, s’) the formal solution of the ERT can be written as (see
for exampleAndrews et al[1987]):

6753)

I(s) = 1,(0) - T(0, s +/ 9225,5) g (3.9)

In an infinite planparallel atmosphere the flux transmissionfuncfjos introduced as:

7}(217 22) fO HT (Zlv 22 ,u)d/’j“ (310)
Jo ndp

and for a spectral bandv, the average of the flux transmissionfunction in this bands
defined as the average of the flux transmissionfunction in a spectralkangimall enough so
that the Planck function can be assumed to be almost constant within the band.

The net cooling flux in the band is then formally given by:

oT;(2,7)

dz’ 3.11
5y (3.11)

Foi = 1B,(0_)T:(0,2) + 7 /0 * B.()

where B, denotes the integral of the Planck function over the bandtandenotes the solid
surface.

With equ. 3.4it follows in the formulation of exchange integralsr{drews et al[1987]):
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dz
=[B:(0-) - Br(z)]w

= ) 1Br(2) = Br(2)] =~

- [ - mn e a (3.12)

hw>:——{—&@

dz'

0207

and the total cooling rate is the sum over all relevant bands.

In the case of small temperature gradients the dominant term in the exchange formulation is
the radiation to space term.

mw“p@R“ﬂﬂim)

(3.13)

This is called the cooling-to-space-approximation. For small temperature differences from the
start profileAT = T — T, the Planck function can be linearized and one can write:

Z(Cﬁ? h—n@} AT = —Kyou(z, T)AT (3.14)
YA

T

OAT 7
o PCp

This is the so called Newtonian-cooling approximation and the coeffiéigntis called Newtonian-
cooling coefficient.

For numerical calculations with discrete leve]st follows from equ.3.12that the heating
rates can be expressed in the form:

he(2i) = ZRijBr(Zj) (3.15)

where the coefficient®;; follow from the transmission coefficients:

5271‘(% Zj)

Fug = Rleoz) ~ =5 5,
iU<j

(3.16)

The R;; constitute a matrix, the so called Curtis-Matrix. When the transmission functions
depend only slightly on the temperature the coefficients can be chosen to be constant. More
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Table 3.1: Coefficients for solar heating

Band Speciese F° [ergem™2s7!] o, [cm?|
Chappuis O; 1.0 3.7 x 10° 2.85 x 1072
Hartley O3 1.0 4600 8.8 x 10718
Herzberg O; 1.0 1.2 x 103 4.9 x 1071
O, 1.0 6.6 x 10~
Schumann — Runge, O, 0.3 1.1 1.0 x 107Y7

exact solutions incorporate the temperature dependence, for example the matrix is expanded to
a temperature dependend series.

For Non-LTE conditions the source function is not given by the Planck function and has to be
determined by a detailed examination of the population densities of the levels which contribute
to the radiation field.

3.2 Parameterization of Solar Radiation

The absorption of ultraviolet radiation is parameterized by the scherBerafel[1978] with
modifications accordind\pruzese et al[1982]. It takes into account the Hartley band (200-

300 nm), Huggins bands (300-350 nm), and Chappuis bands (450-750 nm) of ozone, absorp-
tion in the Schumann-Runge bands (175-205 nm) and the Schumann-Runge continuum (125-
175 nm) ofO,, and the Herzberg continuum of both molecules. If the reaction product ends in
an excited state the lifetime of which is long compared to the transport timescale, a correction
factore < 1 is used which describes the efficiency of the reaction. This factor is used only for
molecular oxygen.

The absorption cross sections are assumed not to depend on temperature or pressure. This
Is an approximation especially for the Huggins bands of ozone. For the Chappuis bands, the
Hartley band and the Herzberg continua the band absorption is characterized by an average
value. Then, using e@®.5the heating rate by species X in band r is given by:

hr,X = Ean’T@ nx Or X eXp(— ZO’anx) (317)
X

whereF?® is the solar flux integrated over the band r. Tablegives the coefficients as used in
the model.
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For the Huggins bands the spectral shape of the absorption is approximated by an exponen-

tial function in the interval g0, Aiong]. This yields:

_ Nos
No,

1
Py M{]l + (I, — 1) exp(—gHuNoge—M)\long)

— Iy exp(—0o gy No,e  MAshort) 1 (3.18)

with I; = 59.2 ergs cm 2 57! A7 I, =400 ergs cm 2 57! A7 M = 0012727, Aaport =
2805 A, Aiong = 3055 A, andoy, = 0.0125 cm?,

The Schumann-Runge continuum is computed in two terms:

hsre = no,Fsrcosre exp{—osrcNo,}
no, I _ No I, -1 _ No I, _ ,No }
v oz 9 Om 2 — Os 2 3.19
o, {Me T e M (3.19)

with the parameters for the first term given in TaBlé and: % = 3.43 erg cm =2 571, IM =

1.35ergecm 257!, 0y = 2.9 x 107¥cm?, 0,, = 1.7 x 10~ 8cm?, ando, = 1.1 x 10~ 7cm?.

For the Schumann-Runge bands a rough approximation is used:

1/(aNo, +bNg?)  for N, > 10" cm™2

3.20
2.43 x 107 ¥ergs™' for Np, < 10'® cm—2 (3:20)

hsrs = no, {

with a = 0.67, andb = 3.44 x 10~ (in cgs units).

The solar heating rat&” in the UV is then determined by the sum of the individual heating
terms.

3.2.1 Solar Heating in the Near IR byCO, and H,O

Solar heating rates in the infrared spectral region in absorption line®eandH,O are deter-
mined using parameterizations for the transmission accotdciog and Hanseifil974] modi-
fied accordindqRamaswamy and Freidenreif1992] andFreidenreich and Ramaswarfiy993].

It is based on the product approximation for transmission of radiation through multiple gases.

The total transmission of radiation between the top of the atmosphere to a level z@dGg to
andH,O is then given by:

Tiot(2) = Tco,(2) - Tny0(?) (3.21)
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Table 3.2: Coefficients and weights
for the pseudo monochromatic inter-

vals used forH,O transmission
Interval Coefficient Weight

m?*/kg
4.0000E-6 0.6214
2.0000E-4 0.0698
3.5000E-3 0.1558
3.7700E-2 0.0631
1.9500E-1 0.0362
9.4000E-1 0.0243
4.4600E0 0.0158
1.9000E1 0.0087
9.8900E1 1.467E-3
2.7060E2 2.342E-3
3.9011E3 1.075E-3
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The transmission fo€O, is given by:

Too, = 1—c1 [(2Nio +1)" — 1] (3.22)

with ¢; = 5.8 x 1074, ¢, = 758 and~y = 0.28, andNHQO the Curtis-Godson scaled column
density from the top of the atmosphere.

The transmission foH,O is given by:

T,0 = ZwkTHQO,k(z) (3.23)

where k denotes some pseudomonochromatic intervals in the water vapour spegtram,
weight with > wy, = 1, and7Zg,0x(2) = exp(—k;Ny,o the transmission in this interval. In
total 11 intervals are used. The used numerical values are given inJablehe heating rates
are determined using eg.7.
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3.3 Parameterization of Cooling Rates

Several versions of parameterizations of the cooling rates can be used: a simplified version
using a Newtonian cooling scheme, and parameterizations for cooling by the most important
molecules based on Curtis matrix representations includifg, O3, NO andH,O. Cool-

ing by these gases have been implemented by two versions: one using a combination of sim-
plified Curtis-Matrix representations published by Fomichev and co-workers together with an
exchange integral representation t@sO (see following sections); the second version uses
the code ofzhu[1994] which incorporates a Curtis matrix interpolation scheme including an
explicit temperature dependence f0D,, Curtis matrix interpolation fof); and a cooling-to-
space approximation fdf,O. For most purposes, a combination of the two versions, using the
cooling-to-space approximation fék, O of Zhu and the parameterizations 100, and O3 of
Fomichev and co-workers give satisfactorily results at a high numerical efficiency. Here only
the parameterizations are described, for which the code was developed by IMK. For a detailed
description of the parameterization of Zhu the reader is referred to the original publication (see
citation above).

3.3.1 Version with Newtonian Cooling

This version uses a simplified radiation scheme. The cooling rate is given by the sum of the
horizontal mean of the solar heating term and a Newtonian cooling term. As the horizontal

mean of the solar heating rate does not depend on the declination of the sun this first term is
constant in time in a first approximation.

+7/2

1 2w
h(z,t) = - /_Tr/2 /0 RO\, ¢, 2, t)dAcospdp — Kraa(2) (TN, 0, 2) — Togu(2))  (3.24)

The Newtonian cooling coefficietdt, .4 (=) is taken fromWehrbein and Leowj1982], with T,
taken from the US-Standard AtmosphéfeS. standard atmosphef&976].

3.3.2 \Version with Parameterizations for the relevant Molecules

These parameterizations includ®,-15:m band,O3-9.6um band,NO for altitudes above
about 90 km andi,O.
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Cooling by CO,

The CO, parameterization is based on the formulation giverrtapichev et al[1993]. It uses
a LTE model for the height below 70 km and includes NLTE effect above.

In the range of 15 - 80 km the parameterization is based on a LTE formulatidkméev
and Shved1982]. It is an extension of a parameterization in the form of a Curtis matrix (see
eq.3.15. For the heightr, the radiative cooling rate is given by (in units@hf?s—3):

hco, = (1= 3w0) D laj(z0) + @obj(x0) + @i (xo)]@; (3.25)

Jj==7

where
w; = exp(—960.24/T;)

describes the approximately constant Planck function over the band Witle temperature at
altitudex; H whereH is the scale height.. The's are given by:

IZ(I‘()) = 29 + AIZ

with Ax; = {—4.75,-2.75,—-1.75, —1.25, —0.75, —0.25,0.0,0.25,0.75, 1.75,3.75} for i €

[—6, 4], wherez_; is the surface. The formula25can be understood as a polynom series for
the derivateives of the transmission functions with the Planck emission as independent variable.
Radiation exchange of different levels is approximated by restricting the number of the involved
altitude levels. In total 14 vibrational transitions are included.

Below 30 km the method ohoki[1980] is applied to compute the coefficients, c using
a quasi random band model with a modified Lorentz profile to account for line overlap. In the
altitude range 70 - 80 km the coefficients were computed including NLTE deviations.

Above 80 km the parameterization is based on the recurrence formwatepov and
Fomiche{1993]. Here the cooling rate is given by:

hco,(7;) = 8.63 - 10° cco, (1 — Aj)é(x;) (3.26)
where

1.5638
Aj = Azj) =

N 1.5638 + exp(—xj)[cNQj kZNQ + Co2j ]{702 + Coj ]{Jo]
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is the mean lifetime of the excited level with:

kn, = (2.9T7 — 10607} + 145000)

ko, = (4.23T7 — 14907 4 180000)

ko =5 x 10°

andcz, the volume mixing ratio of species Z at leve), andk the rate coefficient for the
collisional deexcitation of th€'0,(01'0)-level inatm~. The value of is determined by the
recurrence formula:

Ajg(xj) =Aj 1+ Dj1pj1— Djp; (3.27)

with the boundary condition for = 11.5:

5 _ hco,(11.5)

11.5) = 1.1008 - 107" 2 3.28
(11.5) coo, (1L5)[1 — A(11.5)] (3.28)
whereh(11.5) is determined by the LTE method. The coefficieAtsare given by:

1 1
A, = 1- ) (1 — i - Zdj)
3 1
Ajfl — 1 - )\jfl (1 - Zdjil - Zdj>
1
Dy = 7 (dj1+3d;)
1
Dj—l - Z (de_l + d])
The coefficientsy;, b;, c; are given inFomichev et al[1993] forz = 2 — 11.5 for a

stepsize of 0.25, the same for ttheabover = 11.5. The coefficients are given for the standard
concentration of 330 ppmv & O,.

In order to use this parameterization the temperature field is interpolated to the grid of this
parameterization, the heating rates are calculated and transformed back to the model grid.
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Cooling by Ozone

For ozone the parameterizationfedmichev and Shveld985] is used. It is based on a Curtis
matrix formulation again restricting the number of involved levels:

J 1500
ho, = 2.37 - 10" ¢, Z Cj(xo) exp(— T

j=—I J

) (3.29)

whereh is given incm?s™?, z; andT; are defined as for the parameterizatiorC6j, andc, is
the volume mixing ratio of ozone in ppmv. The indices= —1I ... J correspond to different
heights, where:(—/) = 0 andz(.J) = 11, and

r; = xo + Az,

with Az; = {—6.25, —4.25, —3.0, —1.75, —0.25,0.25,0.5, 1.0} if z; is inside the vertical in-
terval where coefficients are given for the parameterization. Depending on the valyéhef
number | varies from 4 to 7, and J from O to 4.

The coefficientg’; are essentially the second derivative of the transmission function which
is evaluated using a random band model. Only the fundamental transitions 100-000 and 001-
000 are considered with a Voigt profile uniform for all lines in the band. There given

by:

Ly(w0, 7511) + Li(z0, 7;) jg=-1
Ly(xo, j41) — Ly(xo, 2-1) -1 <j<0
—2—1L 1) — L i 1 =0AJ#0
2C’j(a;0) _ b(l‘oy%ﬂ) b(%;% 1) J # (3.30)
—3 — Ly(wo, zj-1) Jj=J=
Ly(zo, 2j-1) — Li(20, Tj41) 0<yj<J
Lb(l'o,l’j,l) — Lb(l’0,$j) j =JANJ 7é 0
The functionL, is parameterized by:
A; —Bj(zo)N ) o J#£0
Lb(x(), LU]> — ](xo) eXp[ ](xo) (I'(), ZE])] ] ?é (331)
1 : 57=0
whereN (zo, z;), the column density of ozone is given by
fl. Vs —Ti+1 Vs —Ti i — T . ] < O
AN (w0,2,) = § 2 oo T A i ) (3.32)
ST o(epe + ey e )z —ximy)  §>0
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The coefficientsd; and B; are given with a step size in x of 0.25 from 3 to 11. As ¢,
the heating rates are determined in this paramerization grid and then interpolated to the model
grid.

NO

NO is the major cooling gas in the lower thermosphere. Here the parameterizaonlkairts
[1980] is used which describes NO emission as a two-level system:

€, 1

hNO = — =-hv n1A10 (333)
PP

Neglecting the radiation field one can write:

hno = 1hyn o A10Cio
NO = —— NOA %
P Cro + Ao

exp(—hv/T) (3.34)
As the most effective collision partner is atomic oxygen, it follatig = kiono wherekg is
the dexcitation rate for collisions with atomic oxygen. The heating rate for N@nihs 3 is
then given by:

kionoAio

1 .
hno = —3.7 x 10713 —_—
NO P 1No kiono + Aio

exp(—2699/T") (3.35)

with kio = 6.5~ cm3s™! andAm =13.3s7L.

H,O

Cooling by water vapour is expressed by using the exchange integral formulation given in equa-
tion 3.12

The transmission function are computed using a statistical band model where the transmis-
sion function is expressed by:

(3.36)

Th, = exp

S’NHQO (1 n SNHQO>_1/2]

) T

Where§ and % are band specific parameters taken frRimdgers and Walsha{l1966]. In
addition, the pressure and temperature dependence of the Voigt profile has been taken into
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Table 3.3: Random Model Band Parameters forH,O
Band Interval S/§  ma/é§ C

rotational 40-160 7210.30 0.182 1.E-3
160-280 6024.80 0.094 1.E-3
280-380 1614.10 0.081 1.E-3
380-500 139.03 0.0080 1.E-3
500-600 21.64 0.068 1.E-3
600-720 2919 0.060 1.E-3
720-800 0.386 0.059 1.E-3
800-900 0.0715 0.067 1.E-3

6.3um 1200-1350 12.65 0.089 4.E-3
1350-1450 134.4 0.230 4.E-3
1450-1550 632.9 0.320 4.E-3
1550-1650 331.2 0.296 4.E-3
1650-1750 434.1 0.452 4.E-3
1750-1850 136.0 0.359 4.E-3
1850-1950 35.65 0.165 4.E-3
1950-2050 9.015 0.104 4.E-3
2050-2200 1.529 0.116 4.E-3

account by scaling: by % where C is effectively representing a finite Doppler width
2 2
of the line. The used coefficients are given in Tal8. For the rotational lines, the parameter

% was reduced by 15% to achieve better agreement with line-by-line computations.
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A Mathematical Symbols and Relations

A.1 Vector Operations

If A, B, C denote arbitrary three-dimensional vectorfields andenotes an arbitrary scalar
field, the following vector operations apply (partly adapted fidattiner and Williamg1980]).

A-(Bx(C) = (AxB)-C

ey (C_;X _))'g (A'l)
Ax(BxC)=(A-C\B—(A-B)C (A.2)
VxVa = 0
V-VxA =0 (A.3)

V-(@d) = aV-A+A-Va

Vx(ad) = aVxA—AxVa (A.4)
V(A-B)=(A-V)B+ (B-V)A+Ax (VxB)+ B x (V x A) (A.5)
V-(AB)=BV-A+A-VB (A.6)
V- (AxB)=B-VxA—-A-VxB (A.7)
Vx(AxB)=AV-B—BV-A+(B-V)A—(A-V)B (A.8)
Vx(VxA)=V(V-A) -V2A (A.9)

Let A = A, + A,, whereV x A, = 0andV - A4, = 0, then:
Ay=Vx , Ay=-Vx¢
Vix=V-A, =V-A |, VW =VxA,=VxA (A.10)



A.2 The Spherical Harmonics
The associated Legendre polynomi@$(..) can be computed by:

Qn(p) = L((n+r;)7n‘(1—u2)m/2-F< m—n,m+n+1m+1; 12M>

2
= ( ) —Qn(ﬂ)

m/2 n4+m
(1—p2)"? arem

= (=1)"™"Qn(—n) (A.11)

for (-1 < u < 1),n=0,1,2,..,and—n < m < n [Korn and Korn 1968]. F' is the
hypergeometric series defined by

F(a,@%u):ulﬁu (1 )(ﬁ( ))
n)s
(v +

ala+1)- .- (a+n)BB+1)- .- (B+n)
1-2- (n+1) )-s(y+mn) a

. (A.12)

[e.g. Bronstein and Semendjajew975]. The non-normalize@!” (1) defined by equation
A.11 satisfy the following recurrence relatiortsdrn and Korn 1968]:

(2n + DpQy' () — (n—m + 1)Q7, (1) — (n+m)Q", () = 0 (A.13)

= (0= 02) D (o 0@ )+ (0 Q) =0 (A1)

CombiningA.13 andA.14 yields:

2 dQ nn—m+1)
() S = e
(“(22(1‘1*) ™) () (A.15)

The normY,™ of Q"*(1) is obtained from the orthogonality relation:

+1

/ Q' (1)Q" (w)dp =

0

oL (A.16)

A.2 The Spherical Harmonics 57



m 1 (n+m)
Y= J 2n+1(n—m)! (A7)

Hereafter and throughout the text of this documgjit(.) refers to the normalized associated
Legendre polynomial:

P () = S (A.18)

n

The equationsh.13 and A.15 become for the normalized associated Legendre Polynomials
P (u) using equatiom\.17 andA.18:

MP:zn(N) - n+1PrTH(N) - 623?—1(#) =0 (A.19)
drPy (1)
m _ 2 n
= ney Pl(p) — (n+ e P () (A.20)
where
. n2 — m2
n =\ 12 1 (A.21)

The spherical harmonics of degreeand ordenn P™(u)e'™* are solutions of the differential
equation:

" (p)e"™ =0 (A.22)

They obey the orthogonality relation (usiAgl6):
+127
; / / P ()™ PE (1) e dAdp = 6767 (A.23)
m

—-10

Any steady and differentiable field on a sphere can be developed in an infinite series of spherical
harmonics:

=3 Y XPER (e (r.24)

n=0m=-—n
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where the complex coefficienfs’” are given by:

Xp = [ [ XOu Pz (e axdy (A.25)

Some properties of spherical harmonics are derived below:

oxX0n)]" 778)( ) -0
aA 1 N 47'(' 1%
( +127r
A.24) mpm( S i R
- X'P! P
47r//aA [Z%mzn( )] 1 (e dAdp

= Z Z [szm//PT’L”(M)Plk(,u)e’mke_m’\d)\d,u]

n Om=-n 10

A2 ik xh
+127
(42 - / / X (N, 1) PE(p)e ™ ddp (A.26)

Integration by parts (i.e.:;[ f'(x)g(z)dz = f(x)g(z) — [ f(x)g'(z)dz), with f(u) =
X (A, p)andg(p) = P (p) yields usingA.20

m 127
OX (N, ) (A.25) TTOX(A M —umA
[ op L 7w / e

-10
(A.20) 1 _—wm
2 = / (A 1) P ()=t e d

+127r

p)e” "M du (A.27)

47r
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The product of two functionX (A, ) andY (A, 1) can be computed as:

+127
Iy A2 ; / / X\, )Y O, ) P ()e™ ™ ddpu
T
—-10

+127 0o 1

=) S 3 [XERHR] S 3 [P PG iy

—1 1=0 k=—1

+127

— = Z Z Z ijk//PJ Pk (j+k))\PT'2n(/uL)€—zm)\d>\dM
7 e Sl

—-10
(4 ) 1 [ <Ble’s] I +1
A.23 m— m— m
= g2 2 X '“Y/“/Pi " () P () Pl (i) dp
=0 1=0 k=m—T 7

for I' = min(s, ).
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