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Abstract: This paper reports the analytical expressions of radiative transfer
and typical instrumental effects the Karlsruhe Optimized and Precise Radia-
tive Transfer Algorithm (KOPRA) is based on. It contains formal expressions
of the integrated version of the equation of radiative transfer in the atmosphere,
the source function for local thermodynamic equilibrium as well as non-local
thermodynamic equilibrium conditions, transmission, slant path column den-
sities of molecules, ray tracing, absorption and extinction coefficients, line
intensities as function of temperature, line shape functions, instrument line
shape of an interferometer, numerical apodization, aperture effects, and field
of view consideration. On this formalism the numeric treatment of spectral
modeling in KOPRA is based.

1 Introduction

Computational treatment of radiative transfer processes in the atmosphere requires
numeric treatment of many processes. Nevertheless the analytic expression behind
the numerics actually coded is important to make a code such as the Karlsruhe
Optimized and Precise Radiative Transfer Algorithm (KOPRA) understandable.
The intention of this paper is presentation of these analytical expressions, such that
interrelations of variables used in this program become traceable. This paper is
organized as follows: First radiative transfer physics is discussed in a top to bottom
manner, starting with the radiative transfer equation, and consecutively breaking
it down to more detail. Second, the degradation functions of a Fourier transform
spectrometer with finite field of view as well as numerical apodization are discussed.
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2 Radiative Transfer Equation

The following integrated version of Chandrasekhar’s [1] radiative transfer equation
is used here:
lo

So(V,lops) = Se,lo) T(,lops, lo) + / JW,1) 00 et (@, 1) T(v, lops, 1) dl - (1)

lobs

where
Se spectral radiance for the viewing angle ©
J source funktion (see Section 2.2)
7(v,l1,l3) transmission between [; and l» for wavenumber v (see Section 2.3)
di path element (see Section 2.1)
a;’:;’f)ml absorption coefficient including gases and aerosols (per volume)
(see Section 2.3.1)
lobs position of the observer
lo position of background radiative source
v wavenumber
l path coordinate

2.1 Ray Tracing

The integration of Eq. 1 is performed along the line of sight of the instrument,
which is, through atmospheric refraction, not a straight line. This integration is
performed not analytically but numerically for thin atmospheric layers character-
ized by constant representative state parameters which are derived from the state
parameter profiles by mass-weighted integration. In a medium of smoothly vary-
ing refractive index n(z), there is refraction as soon as the gradient of n(z) is not
parallel to the raypath. After traveling the infinitesimal distance dl, the angular
difference between the original and the new direction df is [2]

do = di x |e;7ms|/ns (2)

where €3is the component of unity in direction perpendicular to the old direction
and the gradient of refractive index. The the length of each path segment [ in layer
j used for integration of Equation 4 then is

h:/ﬂ 3)

The slant path column amount my, of a species g in the layer j is

l2
ms = [ @
1
where the particle density p, of species g is calculated as
Navo pl
poll) = Cry- 0 6

R Tun()

where N, is the Avogadro constant, R the universal gas constant, Cy,4 the volume
mixing ration of species g, Trin(l) kinetic temperature at the position I, and p is
pressure.
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Mass-weighted state parameters are

1
Poveregeins = o [ PO ©)
and
1
Toverasesns = 7 [ Tps0dl ™)
9,7

This approach supports straight forward consideration of ellipsoidal earth shape,
where the local radius Rg is

Ri(¥) = % s ®
BT\ b2 cos U2 + a2 - sin U2
where
b\ 2
tan ¥ = (—E> tan ® 9)
agE

with geocentric latitude ¥, geographic latitude ®, major semiaxis ag, and minor
semiaxis bg.

The refractive index np is calculated from the wavenumber-dependent refractive
index for dry air ny,, referring to reference state parameters T, = 288.16 K and
po = 1013.25 hPa, as

2kp(l) + T(1)

nbl = 10
(1) T — Ep() (10)
where
T,(n? -1
poo et =D (11)
Do (nbo + 2)
The wavenumber dependence of the refractive index is
24060.3 159.97
— 1)-10° = 83.421 12
(o, — 1) 107 = 834213 + 55057 + 3591002 (12)

where v must be given in cm!.

2.2 The Source Function
2.2.1 Local Thermodynamic Equilibrium

In the case of local thermodynamic equilibrium (LTE), the source function Jrrg is
the Planck function B of the kinetic temperature T%;, of the emitting medium:

JETE(w,1) = B(v, Trin(1)) (13)
The Planck function as a function of frequency f is

_2f? hf

B(f,T)= 25~ - (,g—fT) —

(14)

where h is the Planck constant and c¢ the velocity of light. The Planck function as
a function of wavenumber v can be deduced from Eq. 14 by post-differentiation of
the Planck function by ‘;—}’:

B(v, Tin(l)) = 2he’y? (15)

hcv
exp (kBTkin(l)) -1
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2.2.2 Non-Local Thermodynamic Equilibrium (NLTE)

Here we follow the formalism of [3] and [4]. For a single line, the source function J
in case of non-local thermodynamic equilibrium (NLTE) can be written as:

2hc2 P

JNLTE(V7 l) — -
s XP (kBTf;(l)) -1

(16)

where r; and r are the ratios of populations between the general (NLTE) and LTE
cases for the lower (1) and upper (2) states of transition n. This ratio of populations
between the general (NLTE) and LTE cases for the state m can also be written as

rm = fo(l) exp <_Ell:;m (TVi:m(l) - Tkii(”)) )

where m is the vibrational state under consideration, Ey, m its energy level, Ty 3 the
related vibrational temperature, and fg(!) is a correction factor to the vibrational
partition sum given by

heEyib,m
_ Em gm €XP (_ kBTki: (l))

- z __hcEyip,m ’
m 9m €XP kBTyivb,m (1)

fo(l) (18)

Here, g,, represents the degeneracy factor of state m. For superimposed lines, the
NLTE source function is written as

TNETE@w,1) = B(v,1) - B(v, Trin(1)) (19)

Y r2gn(l) oggw (v,1) my(D)
gan

Pnl) = S D o (. 1) 1y (1) (20)
gn
O'NLTE(I/ l)
= B 21
n = ITE(, ) (1)

where

osTE  absorption coefficient (LTE) (see Eq. 27)
oNLTE  ahsorption coefficient (NLTE) (see Eq. 28)

a,gn

2.3 Transmittance

The spectral atmospheric transmission 7(v,l;,l3) between two points I; and Iy on
the line of sight is calculated as follows:

lz l2

r(,1,12) = oxp — / oo (1) dl + / oo (D) dl (22)

l1 ll

Aerosol



Zorn et al.: Analytical Expressions 13

s
Cexp - 5 foug(l) 2 g vl 1) di
exp E faa,g (V7 ) ol + ae,aerosol (U7 )

=1
9=11; i
Aerosol
where

aVol .. aerosol extinction coefficient (from external Mie calculation)
a;}, o volume absorption coefficient for gases (see Eq. 24)
Oag absorption coefficient of the gas g (see Eqs.25)
my slant path column amount of gas g (see Eq. 4)
dl path element
G number of gases taken into account

2.3.1 Absorption and -Extinction Coefficients
2.3.1.1 Local Thermodynamic Equilibrium

The aerosol extinction coefficient (per volume) is

alel (v,1) = oVo w,1) + os(v,1) (23)

e,aerosol a,aerosol

The gas absorption coefficient is (per volume) is
a
Oagas (1) = D 0ag(1,1) - py(l) (24)
g=1

The absorption coefficient of species g is

Ng
OagW,l) = Z Oa,gn(¥,1) + (cross-sections) + (continua) (25)
n=1
where
aVol o aerosol extinction coefficient (per volume)
(‘l},;’lemsol aerosol absorption coefficient (per volume)
Os scattering coefficient (from external Mie calculations)
Oa,gn absorption coefficient of the transition n of species g
(see Eqgs. 27 / 28)
Py particle density of species g (see Eq. 5)
G number of species under consideration
N, number of transitions of species g

Scattering is considered here in terms of extinction only. No additional source term
of the type

T(v,1) = %r / / p(Q,Q)S(9, Q) d2’ (26)

LTE

a,gn

is considered here. The absorption coefficients o of transition n of species g in

LTE is written

Uf,:;nE(Va ) = Agn(Tkin(l)aV) : (I)gn(Vap(l),Tkin(l)) (27)
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where

Ay, line intensity of transition n of species g (see Eq.2)
®,, profile function of transition n of species g at position [
(see Chapter 2.3.1.4)

2.3.1.2 Non-Local Thermodynamic Equilibrium

In case of NLTE, the absorption coefficient afl\” gLTT E

derived from the absorption coefficient in LTE by a correction factor a:

UNLTE(”J) = ay"(ya l) 'ULTE(Va l)

a,gn a,gn

Correction factor o, which is one in case of LTE, is calculated as

g oLTE (v,1) 1-T
where
n
r = a2 _ exp (—hev [ kpTyin)
9211
nVLTE nYLTE
™ = —ITrE > ™ T TITE
Ny ny
and where
r1,T2 ratios of populations between the general (NLTE) and

LTE cases for the lower (1) and upper (2) state (see 17)
nNLTE  population of the lower state (NLTE)
nFTE  population of the lower state (LTE)
nyLTE  population of the upper state (NLTE)

nETE  population of the upper state (LTE)
g1, g2 level statistical weights for the lower (1) and

upper (2) state
2.3.1.3 Line Intensities

The intensity Ay, of line n of species g is

"
hcv

Agn(TkinaV) = Ag"(Téay) :

Q(Té) e kBTg:in 1 — e *BTkin

Q(Tin) o o R

kBT,
where
kB Boltzmann constant
E;, lower state energy of transition n (see Eq. (3))
Q(T) LTE total internal partition function evaluated at T

(see Eq.(4))
QT LTE total internal partition function at T
Agn(T)) line intensity at reference temperature T,

Trin kinetic temperature
T! reference temperature (296 K)
v wavenumber, usually approximated as v, n

Vo,n central wavenumber of transition n

of transition n of species g is

(28)

(29)

(32)
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The lower state energy E' is calculated from the lower state energy e” in units of
wavenumbers as given in spectroscopic databases by:

Ey, = ceg, h (33)

an

The total internal partition function Q(T') describes the temperature dependence
of the line intensity of a transition. In LTE it is

QT) = 3 g ex (=) (34)

i=o

where j is the rotational-vibrational-state, g the factor of degeneration, and E the
energy of level j. It is approximated as

Q(T) = a0 + 1T + 0/2T2 + 0,3T3 (35)
where ag, a1, a2, and as are pretabulated coefficients [5].

2.3.1.4 Profile Function

The Doppler profile function describes the statistical distribution of frequency shifts
due to thermal motion:

o

- »n

1 In2 — 1112("‘]3”"’")2

@p (v, T) = (36)

aDn ™

Vo [2kTIn2
apa(T) = =20\ [Z2rs (37)

and where ap , is the Doppler halfwidth, M the molecular mass, and v, , central
wavenumber of transition n.

The Lorentzian profile function ®r, , of transition n, centered at v, ,, describes pres-
sure broadening, under assumption of infinitesimally short impact between collision
partners and elastic collisions:

where

La(v,p,T) = . ( ( Ln ) (38)

2
m \ 2 + ol

The actual Lorentzian halfwidth oz , is calculated for the actual temperature T and
actual pressure p from the related reference Lorentzian halfwidth oy, , measured
at reference pressure pL and reference temperature T'X

ooy P (T ”

20, T) = o), T )— | == 39
arnT) = ar b THE (52) (39)
The coefficient of temperature dependence of the halfwidth +,, which, following
classical collisional theory, should be 0.5, may deviate from this theoretical value;

therefore laboratory measurements are used whenever available.
The Lorentzian halfwidth is composed of a self-broadening term and a foreign broad-

ening term:

AL = (1 = COvy) a2 + Cyy afl), (40)

)

where
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QL,n reference Lorentzian halfwidth of transition n
a{‘;rzig" reference foreign-broadening Lorentzian halfwidth of
, transition n of species g
aSLeoli reference self-broadening Lorentzian halfwidth of
transition n of species g
Cvyg volume mixing ratio of species g

The Voigt function @y, is the convolution of Doppler and Lorentzian broadening:

(PL,"(VJPJ T) ® (I)D,"(Va T) (41)
1 In2 y T et
Sy (v,p,T) = kit A S 42
vn(:p,T) apn V. omow /(w—t)2+?/2 “
where
y = n fn2 (43)
aDn
and
z = (w) In2 (44)
D .n

where ap , and ar , are Doppler and Lorentzian halfwidths, respectively, and v,
is the central wavenumber of transition n.

2.3.1.5 Line-mixing

In the case of overlapping lines broadened by collisions, line mixing effects have to
be taken into account [6]. The Lorentzian line profile shape is then modified:

A(T) l &L,n + (V - ﬂo,n)?n(Tap)
AT)n (Vv —Uon)? + (GLn)?

o.(v,p,T) = (45)

®;"  pressure broadened profile function of transition n
under consideration of line-mixing

A(T) line mixing modified line intensity

A(T) line intensity (see Eq. 2)

Uon line-mixing modified central wavenumber

&r,, line mixing modified Lorentzian halfwidth

Y, line-mixing coeflicient

The determination of the quantities signed by a tilde is discussed in Part VI: ’Line
mixing’. Within the Rosenkranz approximation valid for low atmospheric pressures,
the quantities A(T), Uon, and &r,,, are given by their unmodified values.

This modified shape of pressure-broadened lines maps into the Voigt line shape as
follows:

In2 1 L ~ L
(I)l‘;'jn(lj,p,T) = T ap [K(xnayn) + Yn( ,T) L(mnayn)] (46)
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K(%,9) = % / (i —et_);+gz dt (47)
L@y = / ((ﬁN—_th:ﬂz at (48)

where

¥y, Voigt profile function of transition n
under consideration of line-mixing

ap,, Doppler halfwidth (see Eq. 37)

Y, line-mixing coefficient

2.3.1.6 x-Faktor

The impact of time-dependence of collisions on the line shape is considered by
empirical x-factors [7]

oy (v) = x- 2v(v,p,T) (51)
where

@y Voigt-profile function [cm] (see 42)
X x-factor

For CO,, asymmetric y-factors have to be considered. x-factors for CO4 self-broad-
ening as published by Refs. [8][9][10] are compiled in Table 1. x-factors for CO,
foreign-broadening by N2 as published by Refs. [11][12][10] and used in KOPRA are
compiled in Table 2. The x-factor for CO, foreign broadening by O as published
by [11] and [12] is compiled in Table 3.

These x-factors are added weighted by the partial pressures PCO,> PN, and PO,
of contributing gases COs, N2 and Oa:

PN, PO,

p 2
€0y 0o, + “*XCO,-N, + *XCO0,-0, (52)

Drtotal Dtotal Dtotal

where

Ptotal = pC()2 + pN2 + pO2 (53)



18 Zorn et al.: Analytical Expressions

Table 1: x-factor for COy self-broadening; Av = v — v, n, Vo, is the central
wavenumber of transition n, and K; is the modified Bessel function of the second
kind

Temperature: 296 K

0<|Av| <3 em™! xXco, =1
3<|Ay[<10cem™! Xco, = 1470 exp (- 7'%'2)
10 < |Av| €120 em™! Xco, = 0.535 exp (_%)
|Av| > 120 em™!
Av <0 Av >0

|Av| |Av|

xXco, = 0-889 exp (—m) Xco, = 0.220 exp (_ 50.063)
Temperature: 218 K

0<|Av| <3 em™? Xco, =1
3<|Ay[<10em™! XCo, = 1.240319 exp (—%)
10 < |Av| €140 em™! Xco, = 0-68 Al pey (1o
|Av| > 140 em™!
Av <0 Av >0

Av Av
Xco, = 1004385 exp (= 552l)  xco, = 0345 exp (- #255)
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Table 2: y-factor for CO2-broadening by No

Temperature: 296 K

0 < |Av| < 05em™! XCO,-N, = 1

05 < |Av| < 20em™?! XCO,-N, = 1.064 exp(—0.1235 |Av])
20 < |Av| < 50 em™! XCO,-N, = 0.125 exp(—0.0164 |Av|)
50 < |Av| < 140 em™? XCO,-N, = 0-146 exp(—0.0196 |Av|)

|Av| > 140 cm™*

Av < 0
XCO,.N, = 1.8593 exp(—0.03776 |Av|)

Av > 0
XCO,-N,

exp(—0.0196 |Av|)

Temperatur: 238 K

1

0 < |Av| £ 5em” XCO,-N, = 1

5 < |Av| < 22em™?! XCO,-N, = 1.968 exp(—0.1354 |Av|)

22 < |Av| < 50 em™! XCO,-N, = 0.160 exp(—0.0214 [Av|)
|Av| > 50 em™?! XCO,-N, = 0-162 exp(—0.0216 |Av|)

Temperature: 193 K

0<|AY| <9em™

9<|Av| <23 em™!
23 < |Av| < 28 em™!
28 < |Av| < 50 em™!

XCO,-N, =1

XCO,-N, = 3-908 exp (—0.1514|Av|)
XCO,-N, = 0-207 exp (—3.778 107*|Av|)
XC0,-N, = 0.219 exp (—0.0276|Av|)

Av <0
50 < |Av| <130 em™!
XCO,-N, = 0-20894 exp (—0.026694|Av/|)
130 < |Av| < 160 em™!
XCO,-N, = 2-824997 exp (—0.0467266|Av|)
|Av| > 160 ecm™!
XCO,-N, = 1-192053 exp (—0.0413334|Av|)

Av >0

50 < |Av| <135 em™!

XCO,.N, = 0-146 exp (—0.0196|Av|)
|Ay| > 135 em™!
XCO,-N, = 1.164 exp (—0.035|Av])
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Table 3: x-factor for CO2-broadening by O2

Temperature: 296 K

1

0 < |Av| < 3em”™ XC0,-0, = 1
3 < |Av| < 8em™! XCO,-0, = 3-341 exp(—0.4021 |Av|)
8 < |Av| < 50em™! XCO,-0, 0.155 exp(—0.0179 |Av|)
50 < |Av| < T0em™?! XCO0,-0, = 0.238 exp(—0.0266 |Av|)
70 < |Av| < 140 em™? XC0,-0, = 0-146 exp(—0.0196 |Av|)
|Av| > 140 em™!
Av < 0 Av > 0
XC0,-0, = 1.8593 exp(—0.03776 |AII|) XC0,-0, 0.146 exp(—0.0196 |AI/|)
Temperature: 238 K
0 < |Av] < 5em™! XC0,-0, = 1
5 < |Ay| € 22em™! XC0,-0, 1.968 exp(—0.1354 |Av|)
22 < |Av| < 50cem™! XC0,-0, = 0.160 exp(—0.0214 |Av|)
|Av| > 50 em™! XC0,-0, = 0162 exp(—0.0216 |Av|)
Temperature: 193 K
0 < |Ay| < 11em™ XC0,-0, = 1
11 < |Ay| < 23 em™! XC0,-0, = 7-908 exp(—0.188 |Avl)
23 < |Av| < 35em™?! XC0,-0, = 0.122 —(7.539 10 * |Av|)
35 < |Av| < 50em™! XCO,-0, 0.349 exp(—0.0369 |Av|)
50 < |Av| < 135 cem™? XCO,-0, = 0.129 exp(—0.0170 |Av|)
|Av| > 135 cm™! XC0,-0, = 1455 exp(—0.0350 |Av|)
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3 Field of View and Instrumental Line Shape

While previous sections deal with radiative processes in the atmosphere which are
independent of the observing system, in the following the influence of the observing
system is discussed.

3.1 Field of View

The observed spectral radiance Sgoov(u, lobs) is the convolution of the radiances
related to observation angles ® with the weighting function W describing the FOV.

Omaz
SEOY (v, lobs) = / So (U, lobs )W (O — ©9)dO (54)

—Omae

where

W(© — 0g) weighting function related to field of view (FOV),
as integrated for horizontal stripes d©®

SEOV FOV-convolved spectral radiance for viewing angle
O [ =]

Fov field of view

Lobs position of the observer [cm]

v wavenumber (wavenumber) [em™!]

Se spectral radiance for infinitesimal viewing angle ©

(C] viewing angle

Omaz maximum angle covered by FOV

3.2 Instrumental Line Shape

The instrument line shape (ILS) is a function the atmospheric spectrum has to be
convolved with in order to simulate what is seen by the instrument:

—+oo
J SECV (V' lops) - AILS(v —v') dv'
S6™ S (W, lops) = (55)
J AILS(v — ') dv'

where
Se spectral radiance for viewing angle ©
AILS apparatus function incl. numerical apodization (apodized in-

strumental line shape) (see Part XII: *Transformation of irra-
diated to measured spectral distribution due to finite spectral
resolution and field of view extent of a Fourier transform spec-
trometer’)
+fm AILS(v—v') dv' mnormalization (if necessary; in KOPRA +f°o AILS(v—v') dv' = 1)
KOPRA determines a single sided (z > 0) and complex-valued modulation efficiency

with symmetric real and antisymmetric imaginary parts. The AILS is the Fourier
transform of the modulation efficiency. The modulation efficiency M (z)includes
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the numeric apodization function, the modulation loss due to self apodization, the
linear modulation loss and the phase error.

with

AILS(v) = / M(z)e *dx (56)

— 00

M(m) = Mresolution(x) X Mnumerie(m) X Mself(x) X Mlinear(x) X Mphase(x) (57)

e resolution

The interferogram is restricted to maximal optical path difference L

Mresolution(m) =1 if |.’L'| S L
Mresolution(m) =0 else

e apodization function

1.

sinc
Mnumeric =1

. triangle

Mnumeric =1- |.’L'|/L

. Hamming

Mypumeric = 0.53856 + 0.46144 x cos(m x z/L)

Blackmann-Harris 3-term
Mumeric = 0.42323+0.49755 X cos(m x /L) +0.07922 x cos(2 x m x /L)

. Blackmann-Harris 4-term

Moumerie = 0.35875 +  0.48829 x cos(m x z/L)
+ 0.14128 x cos(2 x 7w x z /L)
+ 0.01168 x cos(3 x m x z/L)

. Norton-Beer weak

Mumerie = 0.384093—0.087577x (1 — (z/L)2)+0.703484x (1 — (z/L)?)

. Norton-Beer medium

Mpumeric = 0.152442—0.136176 % (1 — (z/L)2)+0.983734x (1 — (z/L)?)*

. Norton-Beer strong

Mpumeric = 0.045335—0.554883 % (1 — (/L)?)°+0.399782x (1 — (z/L)?)"

e self apodization

The interferometer has finite acceptance angle. It can be shown, that op-
tical path difference depends on the inclination of the wavefront versus the
optical axis. In case of homogeneously illuminated circular internal FOV of
semidiameter one finds that this leads to an additional loss of modulation:

Moy = SROXAVX2) with Ay = 0.5 x v X 0

TXAVXT

Note that the self apodization (and thereby the resulting AILS) depends on
spectral position v. The additional modulation loss describes the consequences
of the finite acceptance angle not completely. In addition, the spectral abscissa
is scaled by 0.5 x (cos(a) + 1).
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e linear modulation loss
This term is used to model the width of the imperfect AILS.
Miinear =1— (1—a) x z/L
the factor a gives the modulation efficiency at maximal path difference vs
ideal instrument.
e phase error
This term is used to model the asymmetry of the imperfect AILS. The phase

error ¢ is given in radians.

Mphase = cf)s(cp)
The norm of the AILS is fixed by the real part of M(0). The denominator

ensures the norm to be unity.

—ip

Since the real valued AILS is the Fourier transform of the complex-valued modu-
lation efficiency, the latter is symmetric in the real part and antisymmetric in the
imaginary part. Due to this symmetry, the AILS is fully determined by a single
sided modulation efficiency interferogram.
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Appendix A

Symbols and Acronyms

7]
ao, a1, az, as

b
be
c

dl

eII

fo

g
91,92
h

J

ks

l

lobs

71{0157”13

ny

7I£VJZJ”IC

N2

p

Dobs

1)(]()2 ’ 19rq2 ’ p()2
pO

pE

r
TA
1,72

ZA

major semi-axis

tabulated coefficients for calculation of

total internal partition function (LTE)

focal length

minor semi-axis

velocity of light

path element (Eq. 3)

lower state energy (from HITRAN)

NLTE correction factor to the partition sum
index specifying species

level statistical weights

Planck constant

rotational quantum number

Boltzmann constant

path coordinate

position of the observer

position of background emitter

vibrational state

slant path column amount of species g (Eq. 4)
index specifying transitions

refractive index (Eq. 10)
wavenumber-dependent refractive index of dry air (Eq. 12)
population of the lower state (NLTE)
population of the lower state (LTE)

population of the upper state (NLTE)
population of the upper state (LTE)

pressure

pressure at observer altitude

COs3, N2 and O partial pressures

reference pressure for calculation of refractive index npg
(po = 1013.25 hPa)

reference pressure for calculation of Lorentzian halfwidth
altitude coordinate + radius of earth

aperture radius

ratio of populations between the general (NLTE)
and LTE cases (Eq. 17)

altitude coordinate

upper boundary of atmosphere
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JLTE
JN LTE

K,
LTE
M

M’resolution

Mnume’ric

Mself
Mlinea'r’

Mphase
N

NH/UO

Ng
NLTE
OPD a2
Q(T)
Q(To)

R

REg

Se
SFOV
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T!
Tlm
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Y.
QD n

)

Qarn

observer altitude

line intensity of transition n of species g (Eq. 2)

line intensity of transition n of species g

at reference temperature 7,

apodized instrumental line shape (apparatus function
incl. numerical apodization)(Eq. 56)

Planck function (Eq. 15)

coefficients for calculation of apodization function
volume mixing ratio of species g

energy of vibrational state m

lower state energy of transition n of species g

field of view

full width at half maximum (nominal spectral resolution)
number of relevant species

source function

source function in case of LTE (Eq. 13)

source function in case of NLTE (Eq. 16)

modified Bessel function of the second kind

local thermodynamic equilibrium

molecular mass

modulation efficiency function related to resolution
modulation efficiency function related to numerical apodization
modulation efficiency function related to self apodization
modulation efficiency function related to linear modulation
efficiency loss

modulation efficiency function related to phase error
apodizing function number

Avogadro constant

number of transitions of species g

non-local thermodynamic equilibrium

max. optical path difference

LTE total internal partition function evaluated at T (Eq. 4)
LTE total internal partition function at T, = 296 K
universal gas constant

radius of Earth (Eq. 8)

spectral radiance for viewing angle © (Eq. 1)

spectral radiance convolved by field of view (Eq. 54)
spectral radiance convolved by apodized instrumental line
shape (Eq. 55)

kinetic temperature

temperature at observer altitude

vibrational temperature (in LTE: Ty = Tkin)

reference temperature for calculation of refractive index np
(T, = 288.16 K)

reference temperature (7, = 296 K)

temperature for calculation of line-mixing coefficients
(T'™ =200 K)

reference temperature for calculation of

Lorentzian halfwidth (TF = 296 K)

weighting function of the FOV

line-mixing coefficient (Eq. 45)

Doppler halfwidth (transition n) (Eq. 37)

Lorentzian halfwidth (Eq. 39)
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reference Lorentzian half width of transition n (Eq. 40)
reference Lorentz half width of transition n

reference Lorentz half width of transition n

x-Faktor

x-faktor for self-broadening of CO, lines (Eq.18)

x-Factor for No-broadening of CO; lines (Eq.19)

x-Faktor for Os-Verbreiterung von CO» (Eq.20)

coeflicient of temperature dependence of air-broadened halfwidth
wavenumber

central wavenumber of transition n

wavenumber interval

number density of species g (Eq. 5)

volume absorption coefficient (Eq. 24)

absorption coefficient of species g (Eq. 25)

absorption coefficient of transition n of species g

Oa,gn in LTE (Eq. 27)

Oa,gn in NLTE (Eq. 28)

volume extinction coefficient (Eq. 23)

aerosol extinction coefficient (from external Mie calculation

scattering coefficient (from external Mie calculation)
transmission between [/; and l» at wavenumber v (Eq. 22)
geographic latitude

profile function of line n of species g

Doppler profile function of transition n (Eq. 36)

Lorentzian profile function of transition n (Eq. 38)
Lorentzian profile function of transition n under consideration of
line-mixing (Eq. 45)

Voigt profile function of transition n (Eq. 42)

Voigt profile function of transition n under consideration of
line-mixing (Eq. 46)

geocentric latitude (Eq. 9)

viewing angle
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