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Absorption coefficients, line
collection and frequency grid

M. Kuntz

Abstract: An efficient algorithm of evaluating absorption coefficients line-by-
line for the purpose of integrating the radiative transfer equation with emphasis
on the Earth’s atmosphere is presented. The main problems associated with
such an algorithm are concerned with line shape, the treatment of lines out-
side the spectral range of interest, and the way in which spectral sampling is
performed. These are considered together with methods improving speed of
computation in general.
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1 Introduction

The absorption coefficient is a function of temperature, frequency (wavenumber),
pressure, gas volume mixing ratio and constants associated with all contributing
line transitions. The contribution to absorption due to a single transition / centered
at v; can be written as the product of the number density N, of the molecular
species s to which the spectral line belongs, the line intensity S;, and a line shape
factor fi(v,v;). The monochromatic absorption coefficient at frequency v of a given
species thus is

Us,l(y):NSZSlfl(V7V1)7 (1)
1

where the summation is performed over all relevant lines. (To simplify notation we
do not include all dependent variables in this and other equations). Eq. 1 refers to
the absorption coefficient under consideration of local thermodynamic equilibrium
(LTE). Corrections to account for non-LTE are performed a posteriori within the
radiative transfer modeling (see Part X:’Non-LTE and radiative transfer’ ).

Note that the calculation of absorption coefficients is extremely time consuming, in
particular if one tries to calculate the spectral absorption coefficient by summing
directly the contribution of each line to absorption. In this case the task soon
becomes prohibitive for three reasons: (a) hundreds of thousands of vibrational
and rotational transitions contribute to absorption; (b) each transition defines a
spectral line that can contribute to absorption over a wide range of frequency; and
(c) absorption coefficients must be sampled at a frequency interval that is sufficiently
small to resolve the thinnest lines of interest.

Rather than summing directly the contributions to absorption, the method used in
KOPRA relies on establishing for each line a set of grid points at which the difference
between the analytic value of such a contribution and its interpolated approximation
exceeds a limiting small value to be specified by the user; line profiles are evaluated
only at these frequencies. The interpolation routine itself is based on three-point
Lagrangian interpolation. The line profiles are then added to summations of line
profiles calculated with the same spectral resolution. Local absorption coeflicients
are constructed when the summations are complete.

An important feature of the method is that the frequencies at which each line profile
is evaluated are determined dynamically. The spacing between such points increases
continuously with distance from line center. Narrow lines are evaluated on a finer
scale than broad lines of the same intensity. Lines of stronger intensity are generally
evaluated on more points than those of weaker intensity.

The method of approximation is subject to the following three sections which are
part of a paper published in JQSRT in 1999 [11]. Following these sections the
implementation of the algorithm in Fortran90 will be described together with a
depiction of the user interface.

2 Calculation of the line intensity

The line intensity S; of line [ is determined as

"
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where
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kg Boltzmann constant

E/ lower state energy of transition 1

Q(T) LTE total internal partition function evaluated at T
Q(Ty) LTE total internal partition function at Tg

Ai(Th) line intensity at reference temperature Ty

Trin kinetic temperature

To reference temperature (296 K)

v wavenumber, usually approximated as v
0,1 central wavenumber of transition [

The lower state energy E' is calculated from the lower state energy e” in units of
wavenumbers as given in spectroscopic databases by:

E' = celh (3)

The total internal partition function is determined by use of Gamache’s parameter-
ization [7]:

Q) = a0 + a1T + asT? + asT? 4)

where ag, a1, a2, and az are pretabulated coefficients stored in the file hitmol.dat
($1.3 in the main KOPRA input file).

3 Efficient calculation of the line shape factor

Different line shape factors may be required for different atmospheric conditions. In
the lower atmosphere, the shape of spectral lines is dominated by pressure broad-
ening and can be represented most simply by the Lorentz line shape factor:

1 ar
fulv,v) = - ——5——5—,
™ (v—wu)+ag,

(5)
where ar,; is the Lorentz half-width at half maximum of the line. At high altitudes,
the shape of spectral lines is governed by Doppler broadening. The corresponding
line shape factor is

v —v) ] , (6)

Ipealvym) = —
D,si\V, V) = exp | —
m ap,s VT D o

where ap s; is the Doppler half-width at 1/e of the maximum for species s. At
intermediate altitudes, both pressure and Doppler broadening are important. They
can be modeled using the Voigt line shape factor, a convolution of the Lorentz and
Doppler line shape factors:

1y [ exp(—t?)
() = y dt, 7
fralw,m) ap,s /T T [oo y?+ (z—1)° ™

>

~~

Kvsi(z,y)

where = (v — v;)/ap,s,; is the distance from line center in units of the Doppler
half-widths, y = ar;/ap,s, is the ratio of the Lorentzian half-width to the Doppler
half-width, and Ky, ;(z,y) is the Voigt profile function. The Voigt line shape
factor reduces to the Lorentz and Doppler line shape factors, respectively, in the
appropriate limits.
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Figure 1: Contours of |Kr s.1(z,y) —Kv,s.1(z,y)|/Kv(z,y), i e. the relative error obtained
by approximating the Voigt profile function by the Lorentz profile function. Dashed lines
mark the regions outside which the Voigt profile function should be approximated by the
Lorentz profile function. Numbers indicate the desired relative accuracy &.

Since the integral in (7) cannot be evaluated analytically, the Voigt profile function
Ky s1(z,y) must be calculated numerically. It is thus desirable to substitute the
Voigt line shape factor by the numerically less expensive Lorentz and Doppler line
shape factors wherever possible. For deriving an appropriate criterion it seems
reasonable to rewrite the Lorentz and Doppler line shape factors (2) and (6) as

1 1 Y
= ] 8
fealv,v) ap,s /T /T2 +y? ®)
————

K si(z,y)

and

1 2
)85 V7V = exp -z I 9
fosav,n) = o oxpl=) ©)

Kpsi(z,y)

respectively, where K, ;;(z,y) and Kp s:(z,y) are the analogues to the Voigt pro-
file function Ky s,(z,y) in (7). Since the profile functions Kr, s i(z,y), Kb, s1(2,y),
and Ky, ;(z,y) depend only on z and y it is much easier to compare the line
shape factors in this form. Figure 1 displays contours of the relative error |Kp s; —
Ky s1|/Kv,s, on a plane with coordinates z and y. Obviously, the larger the dis-
tance from the line center frequency x and the larger the ratio of the Lorentz to
the Doppler half-width y is, the smaller the corresponding approximation error be-
comes. We therefore approximate the Voigt profile function by the Lorentz profile
function outside the elliptical regions bounded by the dashed lines in Figure 1. The
appropriate criterion may be written as

z? > 1.52/€ — 2.84y°,
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Table 1: Number of floating point operations (Flops) within each region. Exponentiation
is considered as 10 floating point operation equivalents.

Lorentz Voigt Doppler
Flops Region 0 Region 1 Region 2 Region 3 Region 4 Region 5
New 3 7 15 19 79 11
Ref. [10] 7! 7 15 19 79 19°0r 794
Ref. [9] 231 23 41 75 148 75% or 1484

1,54 Numbers indicated correspond to the former regions 1, 3, and 4, respectively.

where £ represents the desired relative accuracy. Analogous considerations apply
for the derivation of an appropriate criterion for the Voigt and the Doppler line
shape factor. Figure 2 shows contours of the relative error |[Kp s; — Kv,s1|/Kv,s,
in the z-y plane. Note that the relative error is only small within a small region
around y = 0 that is relatively complicated in shape. However, since the evaluation
of the Voigt profile function for small values y is computationally expensive [9][?]
(see also region 5 in Table 1), we use the Doppler line shape factor if

|z| < 2.15 — 2.53y /€,

as is indicated by the dashed lines in Figure 2. Using a more precise parameteriza-
tion of the contours would be computationally too expensive.

In regions, where neither the Lorentz nor the Doppler line shape factors are appro-
priate, we use an accelerated implementation of the so-called Humlicek algorithm
for the approximation of the Voigt line shape factor [10]. This algorithm involves
dividing the z-y plane into four regions, where ratios of rational polynomials are
used to achieve relative accuracy better than 1 part in 10%. To perform the transi-
tion from the Voigt line shape factor to the Lorentz and Doppler line shape factors
automatically, we add two further regions, region 0 and 5, to the original set of four
regions. The borders of these regions are chosen according to the above criteria,
and the profile function within these regions is evaluated using (8) and (9), respec-
tively. The extent of saving of floating point operations within these two regions is
indicated in Table 1.

4 The optimum set of sampling points

4.1 The method of approximation

For optimum speed, the rapid evaluation of the Voigt profile function must be aug-
mented with a scheme that minimizes its use by reducing the resolution and there-
fore the number of function evaluations. Numerous strategies have been proposed
to achieve this [2][4][5][13][14] . A common approach is to model the absorption
coefficient spectra by using multiple frequency grids: fine grids are used to model
the line shape factor near the line center frequency, while coarse grids are used for
the line wings. However, reducing the resolution requires interpolation to higher
resolution grids and introduces numerical errors, see Figure 3. The finer the fre-
quency spacing Az and the larger the distance from the line center frequency z is,
the smaller the interpolation error § K, ; becomes.

The principle first proposed by Sparks [13] in order to keep these interpolation
errors under control is to introduce an user-specified absolute accuracy coefficient
do, to which the contribution of any line to the absorption coefficient (1) needs to
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Figure 2: Same as Figure 1 except that the Lorentz profile function has been replaced by
the Doppler profile function. Dashed lines mark the regions inside which the Voigt profile
function should be approximated by the Doppler profile function.
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Figure 3: Approximating the profile function by a three-point Lagrangian interpolation.




Kuntz: Absorption Coefficients 49

be calculated to. Inserting Equations (1) and (7)-(9) this condition may be written
as

oo > NoSi

——=0K,
il Lyl
ap,s /T

or equivalently

6K, < M(;

N5 07 (10)

where 0K is the interpolation error that can be accepted for a given line. Note
that this interpolation error is inversely proportional to the number density Ny of
the molecular species s and the line intensity S;. The stronger a given line is, the
smaller the error bounds become within which the interpolation has to be performed
to.

To determine the interpolation error associated with a given line and frequency
spacing Sparks [14] suggests to approximate the profile function K,,;(z,y) by a
simple three-point Lagrangian interpolation [1] :

K, (w0 +pAz,y) =

1

ip(p - 1)K (w0 — Az,y) +
(1—p*) K, 1(wo,y) +

1
Ep(p + 1)K, (z0 + Az, y),
or, setting x = xg + pAx,
K, (z,Az,y) =

1
§p(p - 1)K, (z — Az — pAz,y) +

(1 - p*)Ksi(z — pAz,y) +
%p(p + 1)K, (z + Az — pAz,y)
= K, (z,Az,y).
The interpolation error is then given by
0K i(z,Az,y) = K, i(z, Az, y) — K, 1(z, Az, ).

The problem is to identify the frequencies and frequency spacings at which condition
(10) is violated for a given line. Note that the maximum of the Voigt profile function
K,i(z = 0,y) and hence K, ;(z = 0,Az,y) is proportional to 1/y for y > 1
(Lorentz regime), while 6K, ;(z = 0,Az,y) remains almost constant for y < 1
(Doppler regime). We therefore multiply (10) on both sides with y +1 = (ap,s; +
arg)/ap,s, (this essentially corresponds to the Voigt half-width in units of the
Doppler half-width) and consider the criterion

(ap,sg + ap)/T

10K, ; <
(y+1)0K,,; < N.5,

sa, (11)

rather than (10). Condition (11) reduces to expressions (12) and (16) in the
work of Sparks [14] in the appropriate limits. Figures 4-6 display contours of

A@%’S‘l (y + 1)[0K,,(x, Az,y)| on planes with coordinates log,(Az/(y + 1)) and
log, |2 /Az| for different ratios of the Lorentz to the Doppler half-width, y. Note
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Figure 4: Contours of _Max, (y + 1)6K,(z,Az,y) for y > 1 (Lorentz regime). Also
indicated is the optimum set of sampling points for a maximum acceptable interpolation
error of (y + 1)K, <1075 and < 1077, respectively.

that Az/(y+1) = Av/(ap,s; + ar,) is the frequency spacing in units of the Voigt
half-width and that |z/Az| = |v — v|/Av is the distance from the line center fre-
quency in units of frequency spacing; hence the two axes are not independent of
each other. The logarithmic scale on the base two is chosen to account for the
second order polynomial used for interpolation. Although this choice of axes seems
rather complicated, it is in principle sufficient to note that the vertical axis essen-
tially denotes frequency spacing while the horizontal axis indicates the number of
sampling points that should be considered using a given frequency spacing. How
this information can be used to determine the optimum set of sampling points for
a given line is best illustrated considering examples.

4.2 Cutoff tables

Let us first examine the Lorentz regime, i.e. y > 1; the corresponding contours
of Max (y + 1)6K,,(z,Az,y) are shown in Figure (4). Let us further assume

that a given line, indicated by the contour do\/m(ap,s; + ar,1)/NsSi, needs to be
interpolated with an interpolation error 6K, so that (y + 1)0K,; < 1075. This
implies a frequency spacing of log,(Az/(y + 1)) = logy(Av/(ap,s; + ar)) ~ =5
near the line center frequency and the transition to a coarser frequency grid in
a distance of log, |z/Az| = log,(|lv — u|/Av) ~ 4.7, i.e. ~ 26, sampling points
(indicated by the solid lines in Figure 4). It would be unwise to start with a finer
frequency grid from the beginning since the above value bounds the contour from
below and any frequency spacing finer than Az = (y +1)275 or Av = (ap,s; +
aL,1)2*5 would result in an interpolation error smaller than the one that can be
accepted. On the coarser frequency grid one should evaluate 25 — 238, ie. ~ 32,
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Figure 5: Same as Figure 4 except that the Lorentz regime has been replaced by the
Doppler regime, i. e. y < 1.

sampling points before again proceeding to a coarser frequency grid and so on. The
point is to proceed to a coarser frequency grid only if the interpolation error on the
coarser grid falls below the maximum interpolation error that can be accepted for
a given line. Note that due to the second order polynomial used for interpolation,
the frequency spacing always increases by a factor of two.

Let us consider a stronger line that requires an interpolation error < 107°. In
this case one would start with a much finer frequency grid from the beginning
(corresponding to a frequency spacing of log,(Az/(y + 1)) ~ —9 near the line
center frequency) and evaluate log, |z/Az| ~ 10, i.e. ~ 1000, sampling points before
proceeding to a coarser frequency grid (indicated by the dotted lines in Figure 4).
The same procedure can in principle be applied to the Doppler regime, i.e. y < 1
(see Figure 5), so that tables of cutoffs may be constructed for both limits. These
tables indicate over a wide range of possible interpolation errors and frequency
spacings in which distance from the line center frequency (or equivalently after
the consideration of how many sampling points using a given frequency spacing)
one should proceed to a coarser frequency grid. For a given spectral line one can
then evaluate the maximum interpolation error do\/T(ap,s; + ar,;)/NsS; and use
these tables to define the appropriate Lorentz and Doppler cutoffs for any frequency
spacing Az/(y + 1) = Av/(ap,s; + ar,;) desired. Note that either ap s; or ar,
are negligible in the appropriate limits. We will henceforth refer to these tables as
the Lorentz and the Doppler cutoffs.

As we mentioned previously, in the real atmosphere both pressure broadening and
Doppler broadening are important and can be modeled using the Voigt profile func-
tion. Since the latter, however, depends on both z and y, it is in principle necessary
to establish a complete set of cutoff tables: one for each ratio of the Lorentz to the
Doppler halfwidth y—an enormous waste of computer memory. Figure 6 shows a
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Figure 6: Contours of _1}/53;1 (y + 1)0K,,(z, Az,y) for different ratios of the Lorentz
to the Doppler half-width, y. Also shown is the optimum set of sampling points for a
maximum permissible interpolation error of (y + 1)6K,; < 1072 for y = 107%.
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subset of six contourplots (cutoff tables) for a selected sample of ratios y. Note that
the contourlines change from a more Lorentz-like course for large values of y to a
more Doppler-like course as y successively decreases (compare Figures 4 and 5).
To overcome this waste of computer memory Sparks [14] suggests to neglect the
contribution of a spectral line to absorption on a given frequency grid if the Lorentz
cutoff is equal to zero; otherwise, he takes advantage of the fact that the Voigt
profile function reduces to the Lorentz and the Doppler profile functions in the
appropriate limits and uses the greater of the Lorentz and the Doppler cutoffs for
the approximation of the Voigt cutoff. The corresponding contourlines are shown in
Figure 7. This approximation works quite well in the Lorentz regime, i.e. for y > 1,
but fails for y < 1 (compare the contours shown in Figures 6 and 7).

Consider for example an maximum interpolation error of 10~2 and a ratio of the
Lorentz to the Doppler half-width of 10~* (Doppler regime). According to Figure 6
this implies a frequency spacing of log,(Az/(y + 1)) ~ —3 near the line center
frequency and the calculation of log, |z/Az| ~ 233, i.e. ~ 10, sampling points
before proceeding to a coarser frequency grid. The approximation of Sparks [14],
however, results in a much finer frequency grid from the beginning (corresponding
to a frequency spacing of logy,(Az/(y + 1)) ~ —7, i.e. by a factor 16 finer) and
requires the evaluation of log, |z/Az| ~ 257, i.e. ~ 104, sampling points before
proceeding to a coarser frequency grid. Altogether this approximation results in the
evaluation of ~ 390 sampling points compared to ~ 30 really necessary according
to Figure 6. We mentioned already that the evaluation of the Voigt profile function
for small values y is computationally extremely expensive so that any reduction
of the number function evaluations in the Doppler regime results in a noticeable
gain of computational speed). This incongruity becomes even worse if one prefers
to use the simpler but less restrictive criterion (20) in the work of Sparks [14]
instead of refering to the appropriate cutoff table. It should be mentioned that this
approximation is not a source of computational error—quite the reverse is true.
Absorption coefficients in the Doppler regime are calculated much more accurately
than necessary. The aim, however, is to consider each spectral line with the same
absolute accuracy do.

Instead we take advantage of the fact that the interpolation error of the Voigt
profile function 0Ky, (z,y, Az) can be well approximated by the greater of the
interpolation errors of the Lorentz and the Doppler profile function weighted by the
squares of the ratio of the Lorentz to the Voigt half-width y/(y+1) = ar/(ar+ap)
and the ratio of the Doppler to the Voigt half-width 1/(y+1) = ap/(ar +ap), i.e.

(SKV,S,I ('Z.J Y, A'Z.) ~
max (y*/(y + 1)6K 1 s1(z1,y, AzL), (12)
]‘/(y + 1)26KD,5,I($D7 Y, A"I;D)) .

Note that the auxiliary variables Az and Axzp for a given frequency spacing can
be calculated from Az = Azy/(y + 1) = Avar/ap(ar + ap) and Azp =
Azy/(y + 1) = Av/(ar + aD), respectively. Putting (12) into (11) results in the
criteria

(ap,sg +apg)’ym
1 K A < Ehid) ) 1
(y + )6 L,s,l(Z’L,y, :EL) ~ OlLNsSl oo ( 3)
and
2
(v + 1)K 0i(wp,y, Avp) < R8T OL) VT4, (14)
w apN,S;

for the determination of the auxiliary cutoffs z; and zp from the precalculated
Lorentz and Doppler cutoff-tables, respectively. The greater of z; and zp is finally
used for the approximation of the Voigt cutoff.
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Figure 7: Sparks’ [14] approximation for the determination of the Voigt cutoffs. Also
shown is the resulting set of sampling points for (y 4+ 1)6K,; < 1072 and y = 10,
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Figure 8: Proposed approximation for the determination of the Voigt-cutoffs. The light
shaded regions indicate the domain of frequencies where lines are truncated.
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Figure 9: Approximating the profile function by a three-point Lagrangian interpolation
for large frequency spacings Az.

The quality of this new approximation is striking (compare the contours in Figure 8
with the true contours in Figure 6). Small deviations occurr only for y ~ 1. In
addition, the evaluation of the new criterion requires only four extra floating point
operations compared to the criterion proposed by Sparks [14]. This is certainly
negligible compared to the achieved reduction of function evaluations. Furthermore,
it should be mentioned that in the proposed algorithm the use of cutoff-tables
is minimized so that all sampling points that have to be considered on a given
frequency grid are determined with a single reference to the corresponding cutoff-
tables, whereas Sparks [14] examines each sampling point individually.

4.3 Line rejection and truncation

Another question that has not yet been mentioned is which lines should be retained
in the model and which lines may be rejected. Furthermore, we need a criterion
to decide in which distance from the line center frequency spectral lines may be
truncated without substantial loss of accuracy. This is especially true, if the far
wings of lines are incorporated into models of the continuum and need not be taken
into account explicitly [3]. Sparks [14] provides only two alternatives: to reject a
spectral line completely, or to consider it over the entire frequency range of interest.
In the proposed algorithm lines are only rejected, if K, ;(z = 0,y) is smaller than the
maximum interpolation error that can be accepted for a given line or if the transition
frequency of the line lies beyond a user-specified distance from the endpoints of the
frequency range of interest. This distance is set equal to 25 cm™!. Other lines may
only be truncated.

A closer inspection of Figures 4-6 reveals that all contours converge to log,(z/Az) =
1 for increasing values log,(Az/(y + 1)). This implies that the interpolation error
becomes negligible only in a distance z > 2Az, regardless how large the frequency
spacing is. This can be understood if one recalls that each contour represents
the maximum interpolation error within a region £Az around a given distance z
from the line center frequency. The maximum interpolation error thus approaches
K, (z = 0,y) for increasing frequency spacings Az, as is shown in Figure 9. This
also explains why the algorithm of Sparks [14] evaluates a contribution to absorp-
tion for each spectral line retained in the model over the entire frequency range of
interest, rather than truncating it beyond a certain distance. In the proposed algo-
rithm, we assume that the central part of each spectral line is considered on grids
of finer frequency spacing so that spectral lines are truncated if log,(z/Az) < 1.5
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Figure 10: Representations of a given spectral line of maximum absorption o = 107'°
cm™?! for different absolute accuracies Ao on a set of successively finer frequency grids.
The absolute accuracies Ao and the number of function evaluations are indicated.

and log, (Az/(y + 1) > 0), as is indicated by the light-shaded regions in Figure (8).
This assumption is strengthened by the fact that the frequency spacing of the finest
frequency grid is usually chosen according to the Doppler half-width at high alti-
tudes. Nevertheless, the truncation of lines may also be suppressed as an option so
that each spectral line retained in the model is considered over the entire frequency
range of interest on at least three sampling points. Test calculations revealed that
the above criterion meets the requirement of negligible truncation errors quite well,
especially if the frequency range of interest is small (microwindow approach) and
the far wings are incorporated into models of the continuum.

Figure 10 displays different representations of a given spectral line with a maximum
absorption coefficient of ¢ = 10710 cm ™! for different absolute accuracies Ao. Note
that the frequency spacing is finest near the line center frequency and successively
increases with increasing distance from it. For the lowest accuracy 6o = 1072 cm ™1,
31 sampling points are adequate, while 361 sampling points are necessary to achieve
an absolute accuracy |do| < 107*¢ cm~!. It should be mentioned that for the lowest
accuracy the spectral line has been truncated.

An example of the contribution of a single spectral line to absorption is shown in
Figure 11 together with a reference spectrum calculated on an equidistant frequency
grid of uniform intervals. The resulting interpolation error is shown below. The aim
was an absolute accuracy |[do| < 1071% cm™! which could obviously be achieved over
the entire frequency range of interest. Furthermore, it is interesting to note how
the interpolation error always increases when the algorithm proceeds to a coarser
frequency grid.

5 Efficient summation of spectral lines

The summation of spectral lines follows much of the methodology suggested by
Fomin [5] and is performed on a set of successively finer frequency grids. Each
of these grids is made up of intervals that consist of three sampling points due to
the second order polynomial used for interpolation, see Figure 12. It should be



58 Kuntz: Absorption Coefficients

. 1E-10F
.g i
o 1EM ' — — - equidistant spacing
= ! 3360 points
D -
5 1E-12 ¢ —— interpolation (second order)
S ! 192 points
S 1E-13F
= i
S :
S 1E-14 F
o [
n L
o]
S {E15F

8E-17 |
‘= 4E17F
2,
18 OE+00 [
© -4E17F
>

BE17F , , ,

1000.0 1000.5 1001.0 1001.5

wavenumber v [cm]

Figure 11: (top) Contribution of a single spectral line to absorption applying the new
method of approximation together with the reference spectrum evaluated on an equidistant
frequency grid of uniform intervals. (bottom) The resulting interpolation error.
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Figure 12: Tlustration of the proposed interpolation technique on a set of successively
finer frequency grids. The resulting quasi-uniform frequency grid is indicated by the light
shaded intervals.

mentioned that the two endpoints must be considered individually for each interval
(i.e. it takes two storage locations). This makes possible to consider each spectral
line independently from the others so that each spectral line may be evaluated on
its own optimum set of sampling points. The procedure is similar to the technique
that has been applied in the widely used algorithm of Clough and Kneizys [2] or
Gordley et al. [8] and in particular in the work of Fomin [5], except that the number
of frequency grids for each line is determined dynamically.

The summation of spectral lines is performed in such a way that for each line the
contribution to absorption is added up in the appropriate intervals. For exam-
ple consider the interval marked by @ in Figure 12, to which three spectral lines
of different strengths and half-widths contribute. Note that only those spectral
lines, whose transition frequencies lie far outside the frequency range of interest,
contribute to the interval residing on the coarsest frequency grid. Because each
succeeding frequency grid is by a factor of two finer than the preceeding one, it is
possible to move back to a coarser frequency grid only from every second interval.
This may sometimes result in the calculation of an extra interval on a given fre-
quency grid as for example for the light shaded spectral line in the intervals marked
by @ and ®.

Having completed the summation of spectral lines, absorption coefficients are calcu-
lated in a straightforward manner starting on the coarsest frequency grid and mov-
ing progressively to grids of finer frequency spacing while interpolating and adding
the coarser intervals to the appropriate intervals on the succeeding finer frequency
grid. Note that by using an interpolation scheme with constant coefficients (e.g. La-
grangian interpolation) the contribution of each interval to the succeeding intervals
can be calculated as a linear combination of the contributions to absorption evalu-
ated on the current frequency grid. The interpolation step thus is computationally
efficient, especially since it has to be performed only once after the summation over
relevant lines has been completed.
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Figure 13: Absorption coefficients of ozone at different altitudes calculated for a limb
sounding geometry and a tangent height of 8 km.

Rather than terminating the interpolation only if the finest frequency grid is reached,
the interpolation may readily be terminated at the finest intervals for which a contri-
bution to absorption has been evaluated. In this case one ends up with a nonuniform
or nonequidistant frequency grid which is, however, based on an equidistant fine
grid of uniform intervals, indicated by the light shaded intervals in Figure 12. Let
us henceforth refer to this nonequidistant grid as “quasi-uniform” frequency grid.
Compared to an equidistant frequency grid of uniform intervals this quasi-uniform
grid saves valuable computer memory. Furthermore, the use of quasi-uniform fre-
quency grids presents additional opportunities for optimizing the radiative transfer
calculations, because the integration is performed only on the sampling points of
the quasi-uniform frequency grid. Details of this integration are, however, beyond
the scope of this section. A sequence of O3 absorption coefficients calculated on
quasi-uniform frequency grids at altitudes varying between 8 and 115 km is shown
in Figure 13. For the calculation a limb sounding geometry with a tangent height of
8 km has been assumed. Note that the number of sampling points always decreases
where the absorption coefficient varies only slowly with frequency. At high altitudes
the contributions to absorption are extremely weak and so that spectral lines are
truncated.

Figure 14 is a conceptional depiction of the basic steps involved in the proposed al-
gorithm for calculating absorption coefficients. Firstly, the optimum set of sampling
points for a given line is determined from the appropriate cutoff tables. Secondly,
the sampling points are sorted into increasing order to allow for the rapid evaluation
of the Voigt line shape factor. Thirdly, the contributions to absorption are collected
into the appropriate intervals residing on a set of successively finer frequency grids.
Finally, the coarser intervals are interpolated to the uniform or quasi-uniform fre-
quency grid, respectively.
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Figure 14: Conceptual depiction of the proposed technique for the efficient calculation of
absorption coefficients line-by-line.
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6 Implementation of the algorithm

The proposed algorithm has been implemented in ADDLIN, a Fortran90 module of
~ 1000 lines of code. The objective in developing this module was to accommodate
flexibility and simplicity in use without substantial loss of accuracy and efficiency.
The result was a clear and modular approach that can easily be adapted as a
research tool for specific needs separately from its specific use within KOPRA.
Besides the standard calculation of spectral absorption coefficients ADDLIN has
been generalized to the application of more sophisticated line shape models. In
general, using a different line shape model will require defining new tables of cut-
offs analogous to the Lorentz and Doppler cutoffs discussed before. Considering
line-mixing, for example, requires defining a separate table of cutoffs since the line
shape factor decays asymptotically as |v — v;|~! rather than |v — 1;|~2. In practice,
however, it may often prove sufficient to continue to use the Lorentz and Doppler
cutoffs, especially if line mixing is combined with a line shape model that consists
of a Lorentzian profile modified by a corrective factor x;(v,v;) (often x;(v,v;) takes
the form of a decaying exponential with adjustable coefficients determined empir-
ically). ADDLIN has been designed to support both line mixing and corrective
xi(v, vi)-factors basing on the precalculated Lorentz and Doppler cutoffs. More-
over, considering line mixing requires the evaluation of the complex probability
function which is closely related to the Voigt profile function. Let us henceforth
refer to the complex probability function as fi(v,v;); the Voigt profile function is
referred to as real part of the complex probability function, Re(fi(v, 1)), while the
imaginary part is referred to as Im(fi;(v,v)). For the calculation of the complex
probability function ADDLIN uses the new implementation of the Humlicek algo-
rithm described in section 3 except that the algorithm has been modified to provide
also the imaginary part Im(f;(v,v;)) as an option. The following paragraphs are a
summary of how absorption coefficients are calculated within ADDLIN if line mix-
ing and/or corrective x;(v, v;)-factors are taken into account.

Ordinary absorption coefficient: If neither line mixing nor corrective x;(v, v;)-
factors are considered monochromatic absorption coefficient is calculated as

0e1(v) = N. Y _ SiRe(fi(v, 1)) .- (15)
l

This is the same expression as (1) on page 44.

Corrective x;(v,v;)-factors: If line profiles are to be modified by a corrective
xi(v, vi)-factor, the absorption coefficients is evaluated as

Us,l(V) :NSZSIXZ(V:W) Re(fl(yuyl))a (16)
1

where the corrective x;(v,v;)-factor has to be provided by the user in form of an
external subroutine (for details see the following interface section).

Line mixing: If line mixing is taken into account, the absorption coefficient is
calculated as

os(v) = N Y S Re(fi(v, 7)) + 37 Im(fi(v, 7)), (17)
1

where the summation is performed over all lines of the line-mixing branch. The y;
are coeflicients that have to be provided by the user. KOPRA provides two different
line mixing models for the calculation of these coefficients. Note, that depending
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on the line mixing model used, the linestrengths, line center frequencies and line
widths may also be modified. This is indicated by the asterisks in (17). For more
details on line-mixing and the calculation of the y; coeflicients see Part VI: ’Line
mixing’ in this issue.

Corrective x;(v,v;)-factors and line mixing:

If both corrective x;(v,v;)-factors and line mixing are taken into account the cal-
culation of absorption coefficients requires two steps. In a first step an averaged
corrective x(v)-factor for the whole line-mixing branch is determined from

_ 280 xiw, 1) Re(fi(w, vi%))
2 SiRe(filv,vy))

Note, that the averaged corrective x(v) may be determined either from the original
or the modified line-strengths, line-widths, and line center frequencies (the latter
marked by an asterisk). ADDLIN uses the modified line-strengths, line-widths,
and line center frequencies as indicated in the above equation. In a second step
the averaged corrective y(v)-factor then is multiplied with the result of the pure
line-mixing absorption coefficient to give

051 (v) = Ny X(v) Y Sf Re(fu(v, %)) + g Im(fulw, 1)) - (18)
1

xX(v)

Note that the two steps are performed automatically, if ADDLIN is invoked appro-
priately via its user-interface.

7 User interface

The calculation of absorption coefficients within ADDLIN is performed in an almost
automated way which enables workers to perform computations quickly without
detailed knowledge of the calculation methods involved. Workers may communicate
with ADDLIN only via 9 subroutine invocations, which will be described in detail
in the following;:

allocate_cutoff (cutdop, cutlor) Allocates memory for a number of internal
arrays and initializes some auxiliary variables. Reads the appropriate look-up-
tables for the Doppler- and Lorentz limit, respectively, from the files specified
in the strings cutdop and cutlor. This is the first subroutine to be called
by the user. It should be invoked once before the calculation of absorption
coeflicients starts.

deallocate cutoff This subroutine is the exact counterpart of allocate _cutoff
and should be invoked once after the calculation of absorption coefficients has
been completed.

allocate grid (fmin, fmax, fdel) Determines the spectral range of interest
(fmin, fmax) and the desired spectral resolution fdel. Allocates memory for
the internal set of successively finer frequency grids. The subroutine should be
invoked each time a new spectral range is considered. The units of fmin, fmax,
and fdel should be consistent with the units of alphal., alphaD, and £0 in the
subroutines add lines, add lines _chi, add lines_1m, and add _lines _chilm.

deallocate grid This subroutine is the counterpart of allocate_grid and deal-
locates the arrays specific to a given spectral range of interest. It should be
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invoked each time after the calculation of absorption coefficients for a given
spectral range has been completed.

add_lines (nlines, iflag, alphal, alphaD, ratio, f0, fac, S, dSdT)

Calculates the absorption coefficient according to (15), i.e. add_lines per-
forms the summation of the nlines spectral lines with Lorentz half-widths
alphal, Doppler half-widths alphaD, line center frequencies £0, and line
strengths S. Note that alphal and alphaD are defined as the half-width at
1/2 of the maximum of the profile (rather than 1/e of the maximum as in the
definition of ap,,,; in section 3). As an option, the user may also pass the
temperature derivatives of the line strenghts dSdT, in which case add_lines
also provides the temperature derivative of the spectral absorption coefficient
as an option. It should be mentioned that the temperature derivative of the
absorption coefficient is calculated by summing the temperature derivatives
of the line strengths. Temperature dependences of the line-widths e.g.
are not taken into account. Test calculations revealed, however, that this
approximation is accurate within 5% or better.

iflag determines how the calculation of the absorption coefficient is per-
formed in the detail.

o If iflag = 0, weak spectral lines may be rejected and those lines
retained in the model may be truncated at their line wings.

e If iflag = 1, all spectral will be retained in the model and will be
considered over the entire frequency range of interest on at least
three sampling points. The truncation of lines is suppressed.

ratio determines the accuracy to which spectral lines are considered in the
model:

e If ratio is chosen to be negative, the spectral absorption coefficient
is calculated by summing directly the contribution of each line to
absorption at each frequency. Note that the calculation of this ref-
erence absorption coefficient may be extremely time consuming.

e If ratio is chosen to be ratio of the desired absolute accuracy do to
which the contribution to absorption of a given line is to be calcu-
lated to the number density of the species Ny, i.e. ratio = do /N,
the absorption coefficient is calculated in such a way that the abso-
lute accuracy of the contribution to absorption of each spectral line
is better than do.

e Ratio may also be chosen to be the ratio of the desired absolute
accuracy 7 to which the contribution of a single line to the optical
depth of a given atmospheric layer is to be calculated to the column
density N;As, i.e. ratio = 67/(NsAs), where As is the optical
path-length through the layer. In this case the absorption coefficient
is determined in such a way that the absolute accuracy to which
the contribution of each spectral line is calculated times the optical
path-length As yields §7.

fac is a factor the absorption coefficient is multiplied with.
o If fac is set equal to the volume mixing ratio of a given species, the
result will be the absorption coefficient itself.
e If fac is set equal to the column density, the result will be the optical
depth of the given atmospheric layer.
e If fac is set equal to 1, the result will be the absorption coefficient
divided by the column density.
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interface interface to the user-defined
subroutine sub(x,n,T,y,alphal,alphaD)

use precis_m

external subroutine SUB
definition of precision

integer, intent(in) :: n number of sampling points
real(dp), intent(in) :: T temperature
real(dp), optional :: alphaD,alphalL Doppler and Lorentz half widths

distance from line center
ratio Lorentz to Doppl. halfwidth

real(dp), dimension(*), intent(in)
real(dp), dimension(*), intent(inout)::
end subroutine sub
end interface

< M

Figure 15: Subroutine interface for the corrective x:(v, ) factor to be provided by the
user. For the definition of z and y see section 3.

Note, that the units of ratio (e.g. cm?) and alphal, alphaD, and £0 (e.g.
GHz) must be consistent with the units of the line strength S (e.g. GHzcm?)
and the units of fmin, fmax, and fdel (e.g. GHz) in allocate_grid. Further-
more, the user should take care that if add_lines is invoked several times in
succession, the optional parameter dSdT is either specified or not specified in
all subroutine invocations.

add lines chi (nlines, iflag, alphal,, alphaD, ratio, f0, fac, S, sub

T, dSdT) Same as add_lines except that each spectral line is multiplied by
a corrective x; (v, v)-factor according to (16). This corrective x;(v, v;)-factor)
has to be provided by the user in form of an external subroutine, which
then is used as an argument (sub) in the invocation of add_lines_chi and
should be declared according to the interface block shown in Figure 15. The
input variable T is the temperature in K and has to be provided because the
user-defined x;(v, v;)-factor may be temperature-dependent. If the optional
parameter dSdT is passed, add_lines_chi calculates temperature derivatives
as an option.

add_lines 1m (nlines, iflag, alphal, alphaD, ratio, f0, fac, S,
ycoef, dSAT) Same as add_lines or add_lines_chi except that line mixing
is taken into account according to (17). For this purpose the user has to
provide a dimensionless y; coefficient (ycoef) for each spectral line of the
line-mixing branch (for the calculation of these y; coefficients see Part VI:
"Line mixing’ in this issue or [Funke et al. 1997]). As an option add line 1m
may also calculate the T-derivative of the absorption coefficient depending
on whether the optional argument dSdT is passed or not.

add_lines_chilm (nlines, iflag, alphal, alphaD, ratio, f0, fac, S,

sub T, ycoef, dSdT) takes into account both line mixing and a corrective
xi(v, ;) factor according to (18). Note, that add lines_chilm performs the
two necessary steps, i.e. the calculation of the averaged corrective x;(v,v;)
factor and its following multiplication with the line mixing absorption coef-
ficient automatically. This enables workers to perform computations quickly
without detailed knowledge of the calculation methods involved. Workers
only have to make sure, that each invocation of add_lines_chilm comprises
all spectral lines of a given line-mixing branch. I.e. a given line-mixing
branch may not be split into bundles of lines and add_1ines_chilm invoked
several times for each of these bundles. Again, as an option add_lines_chilm
calculates the temperature derivative of the absorption coefficient, if the
optional argument dSdT is passed.

interpolate grid (iabcomx, iabco, abco, dabcodT, equidistant) performs
the final interpolation of all contributions to absorption calculated on the set
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of successively finer frequency grids either to the quasi-uniform frequency
grid or the uniform fine grid, depending on whether the optional logical in-
put parameter equidistant is passed and true or not. The output variable
iabcomx indicates how many sampling points are necessary to store the ab-
sorption coefficient while iabco is a pointer on an integer vector that contains
the sampling points. Note, that all sampling point are stored as integers and
that the real frequency of the ith sampling point is fmin+iabco(i)*fdel.
The output variables abco and dabcodT are pointers on the spectral absorp-
tion coefficient and its temperature derivative, respectively. The temperature
derivative is only calculated if the optional variable dabcodT is passed and
if the dSAT has been passed on in the preceding invocations of add lines,
add_lines_chi, add_lines_1m, or add_lines_chilm.
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