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The Voigt profile function
and the Planck function

M. Kuntz and M. Hopfner

Abstract: A new implementation of Humlicek’s algorithm for approximating
the Voigt profile function is applied in KOPRA and compared with several
other implementations with respect to computational speed. On scalar com-
puters this new implementation is considerably faster than other implemen-
tations by more than a factor 3.3 on the average. However, on the vector
computer the acceleration between the new implementation and a fully vec-
torized implementation as described by Schreier [3] is only between 1.2 and
1.8, depending on the region of the z,y-space under consideration.

KOPRA is especially designed for the calculation of spectral microwindows.
Therefore, the Planck function, the non-LTE source function and the non-LTE
correction factor for absorption cross sections are calculated in such a way that
a given relative accuracy over the microwindow range is reached.
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1 Voigt profile

1.1 Introduction

The Voigt profile function is the convolution of a Gaussian and a Lorentzian func-
tion. It is expressed as
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where z is the distance from the line center in units of Doppler halfwidths and y is
the ratio of the Doppler halfwidth to the Lorentzian halfwidth. The Voigt profile
function is used in a wide range of contexts and there are—relevant to practical nu-
merical algorithms—numerous ways it can be computed [1]. Many papers have been
published describing routines for evaluating the Voigt profile function based upon
various numerical expansions in different regions of the z,y space. Some of them—
including Humlicek’s algorithm [2]—take advantage of the fact that the Voigt profile
function can be manipulated into an expression in terms of the complementary error
function of complex argument, erfc(z), as

K(z,y) = Re [exp(z?)erfc(2)], z =y —ir. (2)

This relation between the Voigt profile function K (z,y) and erfc(z) allows for ap-
proximations of the error function erf(z) to be used also for K, since erfc(z) =
1—erf(z). Taking advantage of this fact Humlicek’s algorithm divides the z,y space
into four regions, see Fig. 1. It then approximates the complex expression on the
right hand side of Eq. (2), for each region, by appropriate rational polynomials.
These polynomials are chosen to optimize the combination of accuracy and speed
of computation. The Humlicek algorithm thus simultaneously calculates both the
real and imaginary parts of Eq. (2). However, in optical spectroscopy only the real
part is needed, especially if line coupling effects need not be taken into account.
The purpose of this paper is to present a highly efficient algorithm for calculating
the real part of the right hand side of Eq. (2).

In addition to its speed this new algorithm is still very accurate, since Humlicek’s
complex rational approximations are substituted by real ones. As test calculations
revealed, the relative error compared with Humlicek’s original implementation is
less than 210~ throughout the z,y space.

1.2 Acceleration of Humlicek’s algorithm

The first modification we propose refers to overall organization of the algorithm
with respect to the nesting of DO-loops and IF-inquiries. Most computer programs
that use the Voigt profile function apply it to a set of regularly spaced z values
for a given y value rather than to selected z,y points. This is especially true if
a complete atomic or rotational line is calculated. While the original Humlicek
algorithm determines the region (and thus the related polynomials) for each z,y
pair individually, we propose to take advantage of the regularity of the grid points
in z. The regions then need only be determined at their end points, see Fig. 1. This
results in an acceleration of Humlicek’s algorithm without any loss of accuracy,
only by reducing the number of IF-inquiries which are necessary to assign each
z value to its appropriate region. The following sequence of operations, which
defines a recursive algorithm, avoids repeated IF-inquiries and thus is well suited
for evaluation of the Voigt profile function for a large set of x values. In order to
apply this algorithm the z values have to be arranged in increasing order. For the
sake of simplicity we shall further assume that z takes on only positive values. The
extension to negative values can be easily performed.
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Figure 1: The four regions in the z,y space relevant for Humlicek’s approximation
of the Voigt profile function.

(a) If the left and right grid point of the current succession of z values belong
to the same region (which implies, that all z values of the current succession
also belong to this region), then store the indices of the extreme left and right
grid points of this region so far.

(b) Else subdivide the current succession of z values into a left and right succession
of approximately the same size and pop the right succession onto the stack.
(In programming languages which do not support recursion the stack has to
be provided by the user). Continue with the left succession at step 1.

(c) Push the next succession of z values from the stack and continue with step 1.
If the stack is empty, finish the recursive algorithm.

As a consequence the number of IF-inquiries which are necessary to assign each z
value to its appropriate region can be reduced from originally being equal to four
times the number n of z values to less than 41n(n)/1In(2). In addition the indices
of the extreme left and right grid points of each region are known. This allows to
substitute the former DO-loop containing conditional IF-branches (running over all
z values) by four DO-loops (running over all z values lying within the same region)
which do not contain IF-inquiries any longer. The new implementation can thus be
better vectorized.

The second second modification we propose makes use of the fact that for most
applications only the real part of Eq. (2) is needed. We thus substitute the complex
rational polynomials Humlicek uses for approximation within each region by real
ones. The latter can be calculated from the original approximations by separat-
ing them into a real and imaginary part, neglecting the imaginary one. In view of
the intricacy of Humlicek’s complex approximations all calculations were performed
using a computer algebra system. A complete printout of the calculated real ap-
proximations for the Voigt profile function is given in the appendix. This leads to a
considerable reduction of the number of floating point operations which have to be
performed for each grid point in z individually. The reason is that those parts of the
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calculations which concern only the fixed parameter y can be drawn forward and
already be calculated before the DO-loops. The extent of the reduction of floating
point operations within each region is indicated in Tab. 1.

Table 1: Achieved reduction of floating point operations in each of Humlicek’s four
regions. (In the case of Humlicek’s complex rational approximation of the Voigt
profile function all necessary complex floating operations have been expressed as
real floating point operation equivalents.)

region complex real
+/— | */= Jexp || +/— [ */= | exp
1 7 16 0 3 4 0
2 17 24 0 7 8 0
3 37 38 0 9 10 0
4 56 62 3 29 30 2

1.3 Comparison of computing times

Most applications require the Voigt profile function for an array of z values at some
selected y values, rather than for a limited set of z,y points. We thus follow a
proposal of Schreier [3] and consider two sets of y values, 0 < y < 1 and 1 <
y < 10, for comparison corresponding to Doppler and Lorentzian ”dominance”.
For each of 50 y values in these intervals, we calculate the Voigt profile function
for 1000 grid points in the interval 0 < z; < Zmax With Zpmax = 102pa- For
the halfwidth zq. s of the Voigt profile function we use an empirical approximation
zhae(y) = 1 (y+ /92 + 4 In2) proposed by Whiting [4]. In agreement with Schreier
no significant difference in computer time was found for smaller and larger values
of y (0 <y <0,1or10 <y < 100) or for larger Zymax = 20 Zhair. Furthermore,
computing times varied linearly with the number of grid points in the z, y-plane.
The tests were performed on a 90 MHz Pentium PC under DOS, using WATCOM’s
nonoptimizing WATFORS7 compiler (16 bit) and WATCOM’s FORTRAN 7732 op-
timizing compiler (32 bit), respectively. The SUN SPARC20 workstation ran under
Solaris3.1 operating system with a SunSoft FORTRAN 77 4.0 compiler while the
CRAYJ90 (CMOS) used UNICOS 8.0.4.2 with a CF77 compiler. Highest optimiza-
tion and vectorization level has been applied where possible.

Times required for 1000 x 50 evaluations are listed in Tab. 2. Besides Humlicek’s
original [2] and our new implementation two additional implementations have been
included in our comparison of computational speed. The first one is part of GENLIN
[5], a computer program for modeling the atmospheric radiative transfer line-by-line;
the second one has been suggested by Schreier [3], who has drawn much attention
to the vectorizability of his implementation. By far the fastest program on all scalar
computers was our new implementation of Humlicek’s algorithm, which on the av-
erage led to an acceleration factor of more than 3.3. On the SPARC workstation the
acceleration even exceeded a factor 5.5. The other implementations were all nearly
equally slow with slight advantages for the one or other depending on the computer
and region under examination. However, on the vector computer Schreier’s imple-
mentation was nearly as fast as our new implementation, with slight advantages
for the latter in the region 1 < y < 10 (factor 1.8). Both implementations were
superior to the other implementations with respect to computational speed by at
least a factor 10 due to their higher vectorizability.
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Table 2: Computing times in seconds for various implementations of Humlicek’s
algorithm (1000 x 50 points and 0 < z < 10 Zyaf)-

Time (sec) - O<y<l1 -
Humlicek | GENLIN | Schreier | new
PC 16 bit || 2,447 2,070 1,771 | 1,204
PC 32 bit || 2,410 1,538 1,494 | 0517
SPARC20 || 0,359 0,204 | 0,216 | 0,058
CRAYJ90 || 0,220 0,387 | 0,046 | 0,025
. 1<y<10
Time (sec) Humlicek | GENL%N | Schreier | new
PC 16bit 1,202 1,426 1,078 | 0,682
PC 32bit 0,647 0,547 | 0548 | 0,203
SPARC20 || 0,108 0,095 | 0,089 | 0,015
CRAYJ90 0,138 0,184 0,016 0,013

In summary, both, the implementation of Schreier as well as our new implementa-
tion, represent good alternatives for a relatively fast calculation of the Voigt profile
function on vector computers. On scalar computers our new implementation seems
to be superior to the other implementations by more than a factor 3.3 on the average
and a factor 5.5 for the SPARC20 workstation.

1.4 Conclusion on the Voigt profile implementation

We have proposed a new implementation of Humlicek’s algorithm for approximating
the Voigt profile function and have compared it with several other implementations
with respect to accuracy and computational speed. While the accuracy of our new
implementation can be regarded as very satisfactory, its computational speed is
considerably higher than for the other implementations on scalar computers. On
the vector computer our new implementation is only slightly faster than the imple-
mentation of Schreier (the acceleration factor varies between 1.2 and 1.8 depending
on the region of the z,y space under examination) but it still exceeds the imple-
mentations of Humlicek and in GENLIN by at least a factor 10.

2 Planck function, non-LTE source function and
non-LTE correction for absorption cross-sections

2.1 Introduction

For radiative transfer the Planck function B and in case of non-LTE the source
function JVLTE and the correction factor for absorption cross-sections a must be
determined for each spectral grid point v; under consideration:

hev; -
B(Tkin,li) = 2h,(321/i3 (exp (L) - 1) , (3)
kBThin,
e = e (Tt ey (P ) B @
gkli "\ Tgmat kBThin, ’
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hcv;
Tgmil = Tgmal €XP (_ kBTIcin,l)
_ _ __heys
1 —exp ( kBTkin,l)

(For a detailed description of all variables see the illustration of radiative transfer
in Part X: 'Non-LTE and radiative transfer’)

For the determination of analytical derivatives the derivatives of these three func-
tions with respect to the kinetic temperature T};, and the non-LTE/LTE population
ratios r are calculated.

All these functions are, compared with the spectral line structure of the absorption
cross sections, smoothly varying with wavenumber. Therefore, it is not necessary to
recalculate them for each spectral grid point v; which would be very time consuming
due to the exponentials.

(5)

Qgkli =

2.2 Optimized implementation in KOPRA

The implementation in KOPRA is optimized particularly with regard to the calcula-
tion of spectral microwindows. Four steps with increasing complexity of wavenum-
ber interpolation and microwindow subdivision are tested:

(a) Constant value: the function is calculated exactly at the end points and one
point in the middle of the microwindow. If the maximum difference is less
than a certain relative threshold (10~%) the function value of the middle point
is used for all grid points.

(b) Linear interpolation: If the previous criterion is not fulfilled it is checked if the
mean of the function values at the microwindow boarders differ less than the
relative threshold from the function value in the middle of the microwindow.
Then, linear interpolation to all other grid points is performed.

(¢) Quadratic interpolation: In case 1. and 2. are not valid new exact function
values in the middle of the two previous intervals are determined and with
these it is tested if a quadratic interpolation (using the end points and the
middle of the microwindow) is sufficient.

(d) Quadratic interpolation in sub-intervals: If even 3. is not sufficient the mi-
crowindow is iteratively subdivided into smaller intervals until the quadratic
interpolation reaches the relative error limit.

This scheme is used in the following KOPRA routines:

e planckn@radtram: Planck function and derivative with respect to kinetic
temperature

e sourcen@radtram: non-LTE source function and derivative with respect to
kinetic temperature

e alphan@radtram: non-LTE correction factor for cross-sections and derivative
with respect to kinetic temperature

e dsourcedTvibn@radtram: derivative of the non-LTE source function with
respect to the non-LTE/LTE population ratios

e dalphadTvibn@radtram: derivative of the non-LTE source function with re-
spect to the non-LTE/LTE population ratios
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Appendix A

Printout of used
polynominals

Printout of the rational polynominals used for the approzimation of the Voigt profile
function. region 1: |z| +y > 15

ar = 0.2820948y + 0.5641896y>
by = 0.5641896y
as = 025+y%+y*
by = —1+4+29°
b 2
K(r,y) = —2 L0

as + byz? + 24

region 2: 55 < |z| +y < 15

as = 1.05786y + 4.65456y> + 3.10304y° + 0.56419y"
by = 2.962y+ 0.56419y° + 1.69257y°

c3 = 1.69257y — 2.53885y>

ds = 0.56419y

ag = 0.5625+ 4.5y% + 10.5y* + 695 +¢/°

by = —4.54 9%+ 6y* + 4y°

cs = 10.5—6y> + 6y*

dy = —6+4y°

as + bsz? + csz* + d3z®
a4 + byz? 4 cyzt + dyxb + z8

K($7y) =
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region 3: |z| +y < 5.5 and y > 0.195|z| — 0.176

as

bs

Cs

ds

€s

ag

Ce

dg
€6

272.102 + 973.778y + 1629.76y> + 1678.33y> + 1174.8y*
+581.746y° + 204.501y5 + 49.5213y7 + 7.55895y° + 0.564224y°
—60.5644 — 2.34403y + 220.843y% + 336.364y> + 247.198y*
+100.705y° + 22.6778y° + 2.25689y"

4.58029 + 18.546y + 42.5683y% + 52.8454y° + 22.6798y*
+3.38534y°

—0.128922 + 1.66203y + 7.56186y> + 2.25689y>

0.000971457 + 0.564224y

272.102 + 1280.83y + 2802.87y> + 3764.97y> + 3447.63y*
+2256.98y° + 1074.41y° + 369.199y” + 88.2674y® + 13.3988y°
+y10

211.678 + 902.306y + 1758.34y> + 2037.31y°> + 1549.68y*
+793.427y5 + 266.299y° + 53.5952y7 + 5y

78.866 + 308.186y + 497.302y2 + 479.258y° + 269.292y*
+80.3928y° + 10y°

22.0353 + 55.0293y + 92.7568y> + 53.5952y° + 10y*

1.49645 + 13.3988y + 512

as + bsz? + csz* + dszb + e5a®
ag + bgx? + cgx + dgzb + egx® + 10

K($7y) =
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region 4: |z| +y < 5.5 and y < 0.195|z| — 0.176

ar

br

&4

dr

€7

fz

gr

he

o7

b7
q7
r7
S7
t7
as

bs

Cg

ds

€s

1.16028e9y — 9.86604e8y°> + 4.56662e8y> — 1.53575e8y” + 4.08168¢7y°
—9.69463e6y'! + 1.6841e6y> — 320772y + 40649.2y7 — 5860.68y*°
+571.687y%t — 72.9359y%% + 2.35944y%° — 0.56419y>"

—5.60505e8y — 9.85386e8y> + 8.06985e8y°> — 2.91876e8y” + 8.64829¢7y°
—7.72359e6y*! + 3.59915e6y> — 234417y + 45251.3y'7 — 2269.19y*°
—234.143y%! + 23.0312y%% — 7.33447y%®

—6.51523e8y + 2.47157e8y> + 2.94262e8y° — 2.04467e8y” + 2.29302¢7y°
—2.3818eTy! + 576054y + 98079.1y*° — 25338.3y" + 1097.77y°
+97.6203y>" — 44.0068y>3

—2.63894e8y + 2.70167e8y> — 9.96224e7y® — 4.15013e7y” + 3.83112e7y°
+2.2404e6y' — 303569y*° — 66431.2y*° + 8381.97y" + 228.563y°
—161.358y%!

—6.31771eTy + 1.40677e8y> + 5.56965e6y° + 2.46201eTy” + 468142y°
—1.003e6y'! — 66212.1y* + 23507.6y*° + 296.38y'" — 403.396y°
—1.69846€7y + 4.07382¢6y> — 3.32896e7y> — 1.93114e6y” — 934717y°
+8820.94y! + 37544.8y'3 + 125.591y'5 — 726.113y'7

—1.23165e6y + 7.52883e6y> — 900010y° — 186682y” + 79902.5°
+37371.9y! — 260.198y*3 — 968.15y°

—610622y + 86407.6y° + 153468y° + 72520.9y" + 23137.1y°
—571.645y'! — 968.15y13

—23586.5y + 49883.8y% + 26538.5y° 4+ 8073.15y" — 575.164y°
—726.113y*!

—8009.1y + 2198.86y° 4 953.655y° — 352.467y" — 403.396y°

—622.056y — 271.202y° — 134.792y° — 161.358y"

—77.0535y — 29.7896y° — 44.0068y°

—2.92264y — 7.33447y°

—0.56419y

1.02827€9 — 1.5599¢9y2 + 1.17022e9y* — 5.79099¢8y° + 2.11107e8y®
—6.11148e7y'" + 1.44647e7y'2 — 2.85721e6y'* + 483737y'8 — 70946.1y'®
+9504.65y2° — 955.194y%? + 126.532y%* — 3.68288y%¢ + 28

1.5599¢9 — 2.28855e9y2 + 1.66421e9y* — 7.53828e8y° + 2.89676e8y°
—7.01358e7y'% + 1.39465e7y'? — 2.84954e6y'* + 498334y'¢ — 5560048
+3058.269%° + 533.254y%2 — 40.5117y>* + 14y2°

1.17022€9 — 1.66421e9y2 + 1.06002e9y* — 6.60078e8y° + 6.33496e7y®
—4.60396e7y0 + 1.4841eTy'? — 1.06352e6y'* — 217801y*¢ + 48153.3y'®
—1500.17y2° — 198.876y2% 4+ 91y>*

5.79099¢e8 — 7.53828e8y> + 6.60078e8y* + 5.40367eTy® + 1.99846e8y°
—6.87656e6y'° — 6.89002¢6y'? + 280428y'* + 161461y® — 16493.7y8
—567.164y%° 4 36412

2.11107e8 — 2.89676e8y? + 6.33496e7y* — 1.99846e8y°® — 5.01017e7y®
—5.25722e6y"° + 1.9547e6y'? + 240373y™* — 55582y'¢ — 1012.79y*®
+1001y%°
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fs = 6.11148¢e7 — 7.01358y> + 4.60396e7y* — 6.87656e6y° + 5.25722e6y°
+3.04316e6y° + 123052y*% — 106663y** — 1093.82y'¢ + 2002y'®

gs = 1.44647e7 — 1.39465e7y? + 1.4841eTy* + 6.89002e6y° + 1.9547¢6y°
—123052y'° — 13133712 — 486.14y* + 3003y*°

hs = 2.85721e6 — 2.84954e6y> + 1.06352e6y* + 280428y° — 240373y°
—106663y' + 486.14y% + 3432y

0og = 483737 —498334y? — 217801y* — 161461y°® — 55582¢3
+1093.82y° + 3003y12

ps = 70946.1 — 55600y — 48153.3y* — 16493.7y% 4+ 1012.79y8
+2002y°

s = 9504.65 — 3058.26y> — 1500.17y* + 567.164y° + 1001y®

rs = 955.194 + 533.254y% + 198.876y* + 364y°

s = 126.532+ 40.5117y* + 91y*

ts = 3.68288 4 14y>

K(z,y) = ey’ cos(2zy) —

ar + brz? + crzt + d72® + era® + f22'0 + g7 + hpzt+

ag + bgx? + cgx* + dgz® + ega® + fozl® + gex'® + hgzli4
+ 072" + pr2'® + qr2?° + r72?? + 727 + t72?®

05718 + pezl® + gsa?0 + 13z?? + 55224 + 1320 + 228
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