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Transformation of irradiated
to measured spectral
distribution due to finite
spectral resolution and field
of view extent of a Fourier
transform spectrometer

F. Hase

Abstract: It is described how instrumental effects on the irradiated spectrum
(apodized instrumental line shape, noise, field of view, spectral shift) are sim-
ulated by KOPRA. The calculation of derivatives with respect to elevation,
spectral shift, ordinate offset, ordinate scale, and instrumental line shape pa-
rameters is presented.
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1 Introduction

Any real spectrometer has limited spectral resolution and thereby acts as a low
pass filter on the irradiated spectral distribution. The measured spectrum can be
described locally as the convolution of the incoming spectrum with an appropriate
instrumental line shape (ILS). KOPRA performs the convolution with a truncated
ILS in the spectral domain using an interpolatoric integration rule.

In case of a Fourier transform spectrometer the ILS is the Fourier transform of
the modulation efficiency in the interferogram domain. Thereby the natural ILS
assuming constant modulation efficiency up to maximal optical path difference L is
the sinc function. In a real instrument the modulation efficiency decreases some-
what with increasing optical path difference due to finite acceptance angle of the
interferometer (called self-apodisation). Interferometric misalignment, aberrations
in the optical system and imperfect phase correction further distort the ILS and
destroy its symmetry. The general ILS is the Fourier transform of a complex valued
and wavenumber dependent modulation efficiency.

A multiplicative weighting function working in the interferogram domain can be
used to modify the resulting ATLS. This procedure is called numerical apodisation.
To reduce the sidelobes of the raw ILS, a variety of apodisation functions are in use.
KOPRA calculates the AILS from the resulting modulation efficiency in the inter-
ferogram domain (including self -apodisation) and handles all common apodisation
functions. Instrumental imperfection can be described in terms of a set of 2 pa-
rameters: an additional linear modulation loss and a phase error. Derivatives of
the spectrum with respect to these parameters can be calculated. In case of MI-
PAS ENVISAT the ILS model given by BOMEM is used by KOPRA. Alternatively,
KOPRA can use an external ILS given in tabulated form.

Any real spectrometer accepts radiation out of a finite solid angle. It acts as a
low pass filter on the irradiated spectral distribution with respect to directional
variability. The instrumental responsitivity to a point source in infinity as a function
of its orientation with respect to the instrumental line of sight characterises the
external field of view (FOV). The irradiated spectral distribution has to be convolved
with this sensitivity function. Since in a Fourier Transform spectrometer the optical
path difference depends on the inclination of the wavefront in the interferometer,
inhomogenous illumination of the FOV affects the spectral response also. This effect
is small in typical situations of remote sensing and KOPRA allows to estimate it.
For this purpose, obviously the FOV inside the interferometer (internal FOV) has
to be used.

In the retrieval process, derivatives to each of the fit parameters are needed. In the
context under consideration here KOPRA offers derivatives with respect to

e line of sight (LOS)

spectral shift

ordinate scale

ILS parameters: linear modulation loss and phase error

BOMEM ILS parameters: retroreflector linear shear variation along z-axis
and IR misalignment along y direction

KOPRA offers a noise generator. If no numerical apodisation is performed, the gen-
erated Gaussian noise is uncorrelated on a spectral grid of width 1/2L. If numerical
apodisation is performed and/or grid spacing differs from 1/2L, the correlations
reproduce the statistical behaviour resulting from white Gaussian noise in interfer-
ogram domain.
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2 Calculation of AILS

KOPRA determines a single sided (z > 0) and complex-valued modulation efficiency
with symmetric real and antisymmetric imaginary parts. The AILS is the Fourier
transform of the modulation efficiency. The modulation efficiency M (z) includes
the numeric apodisation function, the modulation loss due to self apodisation, the
linear modulation loss and the phase error.

M(.Z') = Mresolution(x) X Mnumeric(x) X Mself (Z') X Mlinear (117) X Mphase(x) (]-)

e resolution

The interferogram is restricted to maximal optical path difference L

Mresolution(m) =1 if |$| S L
Mresolution(m) =0 else

e apodisation function

(a) sinc
Miyumeric =1
(b) triangle
Muumeric =1 —|z|/L
(c) Hamming
Mpumeric = 0.53856 + 0.46144 x cos(m x z/L)
(d) Blackmann-Harris 3-term
Mpumeric = 0.42323+0.49755 x cos(m x 7/ L) +0.07922 x cos(2 x 7 x 7/ L)
(e) Blackmann-Harris 4-term
Mpumeric = 0.35875 + 0.48829 x cos(m x z/L)
+ 0.14128 x cos(2 x 7w x z /L)
+ 0.01168 x cos(3 x 7 x z/L)
(f) Norton-Beer weak
Mpumerie = 0.384093—0.087577x (1 — (/L)2)+0.703484x (1 — (z/L)?)
(g) Norton-Beer medium
Mpumeric = 0.152442—0.136176x (1 — (z/L)?)+0.983734x (1 — (m/L)2)2
(h) Norton-Beer strong
Mpumeric = 0.045335—0.554883x (1 — (z/L)?)+0.399782x (1 — (z/L)?)"

e self apodisation

The interferometer has finite acceptance angle. It can be shown, that op-
tical path difference depends on the inclination of the wavefront versus the
optical axis. In case of homogeneously illuminated circular internal FOV of
semidiameter one finds that this leads to an additional loss of modulation:

My = % with Av = 0.5 x v x a2

Note that the self apodisation (and thereby the resulting AILS) depends on
spectral position v. The additional modulation loss describes the consequences
of the finite acceptance angle not completely. In addition, the spectral abscissa
is scaled by 0.5 x (cos(a) +1). Since the latter effect is usually absorbed in the
spectral calibration, KOPRA does not perform any spectral scaling or shift on
the calculated spectrum due to self apodisation.
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e linear modulation loss
This term is used to model the width of the imperfect AILS.
Miinear =1 — (1 - a) X .Z'/L

the factor a gives the modulation efficiency at maximal path difference vs
ideal instrument.

e phase error

This term is used to model the asymmetry of the imperfect AILS. The phase
error ¢ is given in radians.

e
Mphase = —Czs(q,)

The norm of the AILS is fixed by the real part of M(0). The denominator
ensures the norm to be unity.

Since the real valued AILS is the Fourier transform of the complex-valued modu-
lation efficiency, the latter is symmetric in the real part and antisymmetric in the
imaginary part. Due to this symmetry, the AILS is fully determined by a single
sided modulation efficiency interferogram.

KOPRA uses a semianalytic discrete Fourier transform. This method avoids chan-
neling effects and facilitates fast and accurate calculation of the AILS on any grid
spacing. The values of the modulation efficiency are calculated at N equidistant
optical path differences z; up to maximal path difference L

N —i
N -1

T = x L with i=1,2,--- N

It is assumed, that in between these positions the modulation efficiency can be
approximated by linear interpolation to sufficient accuracy. KOPRA uses N =
200. This interferogram can be transformed analytically, by breaking both real and
imaginary part down into a boxcar and N-1 triangles and adding up the Fourier
transforms of these functions. The width of the boxcar is £; = L and the widths of
the triangles are z1,%2, -+ ,Zn—1. The contribution of the real-part boxcar groz,re
is

gboz,re = RG(M(.TN))
and the contribution of the real-part triangle giriang,re to z; is

Gtriagre(t) = (N+1—4)x Re(M(N+1—-1i)—M(N+2—1))
_ igtriang,re(k)/(]v +1—k)
k=2

The contributions for the imaginary-part boxcar and triangles are found accordingly
by exchanging real by imaginary parts in the formulas. To achieve a compact
notation, we use k = 2 x m x v in the following. Note that the analytic Fourier
transforms given below are normalized to unity with respect to the wavenumber
abscissa v.

The Fourier transform of the real-part boxcar is:

2 x sin(k x L)
k

The Fourier transform of the imaginary-part boxcar is:

FTbaz,re (ka L) =

4 x sin*(0.5 x k x L)
k

FTboz,im(kaL) =
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The Fourier transform of the real-part triangle of width z; is:

4 x sin®(0.5 x k x ;)

FTtriag,re(kaxi) = T X k2

The Fourier transform of the imaginary-part triangle of width z; is

2 X (z; x k —sin(z; x k))
FTtriag,im(kami) = ( 2. X k2

The AILS then is given by superposition of all analytic contributions:

N-1
AILS(k) = Gbozx,re X FTbow,re(k; L) + Z Gtriag,re (l) X FTtriag,re (k; xz)
i=1
N-1
+gboz,im X FTboz,im(kaL) + Z gtriag,im(i) X FTtriag,im(kawi)

=1

3 AILS Model for MIPAS-ENVISAT

KOPRA uses the semiempiric BOMEM ILS model to construct the AILS of the
MIPAS instrument onboard ENVISAT. This model is discussed in detail in PO-RS-
DOG-GS-0002. A complex modulation efficiency is calculated:

Mv,z) = Mir(v,z) x Mp(v,z) x My (v,z) x Msp(v,z) X Mp4(v,z)

XMLUJ(”) .’L') X MLf(Vy $) X MRes(x) X Mnumeric(m)

Mg complex modulation function related to IR-misalignment

My, complex modulation function related to laser misalignment

My complex modulation function related to optical speed

Mgsp complex modulation function related to sampling distortions at turn

around

Mrq complex modulation function related to laser drift

My, real modulation function related to white noise of laser

My real modulation function related to 1/f noise of laser

MRges real modulation function related to limited optical path difference

M, yumeric  real modulation function related to numerical apodisation (Norton-
Beer strong)

These modulation functions depend on 24 parameters. Their values are specified
by the user in the KOPRA input file. Two out of these are designated to describe
AILS imperfections. They are marked with asterisks.

(a) maximal optical path difference [nominal/default value: 20 cm]

(b) infrared misalignment y-direction [nominal/default value: 0 rad] *

(c) infrared misalignment z-direction [nominal/default value: 2x10~*rad]
(d
(e

(f) linear shear variation along y [nominal/default value: 0 , dimensionless]

retroreflector linear shear along y [nominal/default value: 4x10~3cm]

retroreflector linear shear along z [nominal/default value: 4x10 3cm]

)
)
)
)
)
)

(g) linear shear variation along z [nominal/default value: 0 , dimensionless] *
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full interferometer divergence along y [nominal/default value: 5.4x10~3rad]
full interferometer divergence along z [nominal/default value: 9.0x10~3rad]
blur angular width along y [nominal/default value: 5.2x 10 %rad]

blur angular width along z [nominal/default value: 3.3x10~*rad]

laser misalignment along z [nominal/default value: 1.5x10~*rad]
optical speed of interferometer [nominal/default value: 10.0 cm/s]

)
)
)
)
(1) laser misalignment along y [nominal/default value: 1.5x 10~ *rad]
)
)
) initial sampling pertubation [nominal/default value: 4x10~%cm]
)

time constant of exponential attentuation of initial sampling pertubation
[nominal/default value: 0.16 s

(q) time constant of exponential attentuation of initial speed fluctuation [nomi-
nal/default value: 0.016 s]

(r) initial relative speed fluctuation at beginning of scan [nominal/default value:
0.03, dimensionless]

(s) gain slope of IR electrical response [nominal/default value: -0.22, dimension-
less]

(t) mismatched delay between electronic response and ADC trigger [nominal/de-
fault value: 1.4x10~ 6]

(u) laser wavenumber [nominal/default value: 7692.0 cm—!]

(v) relative drift rate of laser wvnr [nominal/default value: 1.0x10~8, dimension-
less]

(w) bandwith laser white noise [nominal/default value: 2x107Hz]
(x) bandwith laser 1/f noise [nominal/default value: 0 Hz]

To avoid confusion, it is important to mention that the BOMEM ILS model and the
KOPRA AILS model described above introduce complex modulation functions with
different meaning. The KOPRA modulation function is just the inverse transform
of a real AILS. The symmetry properties of the modulation function guarantee
the imaginary part of the AILS to be zero. The BOMEM modulation function
has a physical meaning: it characterises amplitude and phase orientation of the
modulation related to a monochromatic input signal. The ILS is proportional to
the real part of the Fourier transform of the modulation function.

KOPRA handles the BOMEM model in the following way: The double-sided mod-
ulation function M (v, z) is calculated as given in document PO-RS-DOG-GS-0002.
Then M (v, z) is scaled and rotated in the complex plane to achieve a real M(v,0)
normalised to unity at zero path difference:

M(v,z) = M(v,z) x e~ ||M(v,0)] with M (v,0) = |[M(v,0)| x e*°

A single sided modulation function M (v, z) is calculated from M (v,z) with sym-
metric real and antisymmetric imaginary part.

M(v,z) = 0.5 x (Re(M(v,z) + M (v, —z)) + i x Im(M (v, ) — M (v, —z)))

The Fourier transform of M (v, z) is the TLS. Tt is performed using the semianalytic
discrete transform described above.
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4 Convolution

The measured spectrum S(v) is the convolution of the irradiated spectrum S(v)
with the instrumental lineshape AILS(v — vy).

S(v) = /S(l/) x AILS(vy — v)dv with /AILS(I/)dI/ =1

The AILS transmits the incoming flux at spectral position v to measured flux at
spectral position vg. Despite the fact, that the AILS is a function of v it is assumed
that all significant contributions to the measured flux at vy are transmitted by the
AILS strictly valid only at position v9. Moreover, the measured flux is usually cal-
culated in a whole microwindow extending from v; to vo. KOPRA then uses the
AILS valid for the arithmetic mean wavenumber 0.5 x (1 + 1»2). In the practice of
remote sensing, the first approximation is always justified. The second approxima-
tion demands |(v; — v2)|/(v1 + v2) < 0.02(0.1) as a rule of thumb for a negligible
variation of modulation efficiency of 0.01 (0.05) at maximal path difference.

Since the calculation of S(v) has to be restricted to a finite interval, the integral
has to be truncated. The modification must not be done in the following way

S(v) = /S(V) x AILS(vg — v) x W (vy,v2)dv

with W(vy,ve) =1 if w—n)v—1m)<O0
W(v1,v2) =0 if (v—n)v—r)>0

because this is equivalent to the convolution of the untruncated AILS with the
windowed spectrum S(v) x W (w1, vs). The sharp boarders of the window give rise
to the Gibbs phenomenon: unwanted oscillations spread from the boarders into the
spectrum.

To avoid these oscillations, KOPRA calculates the spectrum in an enlarged interval

extending from vy, = v; — Av t0 v2, = v2 + Av and the truncation is assigned to
the AILS

5 vo+Av
S(ve) = / R S(v) x L(vg — v)dv
vo—Av

/S(l/) x AILS(vg — v) x W(vg — Av,vg + Av)dy

KOPRA chooses the truncation window according to the users specification to en-
sure that the transmission T'(v) = AILS(v)/AILS(0) from outside the window is
lower than a certain threshold. Due to the truncation, the norm of the AILS is
slightly lower than unity (see Table 4).

KOPRA solves the radiative transfer equation at a finite number of discrete spec-
tral positions. The calculated incoming spectrum is interpolated to an equidistant
spectral grid before the convolution is performed. The grid spacing has to be dense
enough to depict even the sharpest details to be expected in the spectrum. In the
atmospheric spectrum, these are the cores of purely Doppler-broadened lines. The
hwhm vp of a line at spectral position v emerging from a species of mass m in an
atmospheric layer of temperature T is

(2T 1
YD = — X X v
m cln?2

T[K]
mlamu)

YD [cmfl] ~ 6.22x 1077 x X v [cmfl]
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Apodisation T=0.01 T=0.001 T=0.0001
boxcar 16/L 160/L 1600/L
0.9957 0.9996 1.000
triangle 3/L 10/L 32/L
0.9666 0.9899 0.9968
Hamming 1/L 23/L 510/L
1.0029 0.9997 1.0000
3-term Blackmann-Harris 1.5/L 2/L 17/L
0.9999 1.0000 0.9999
4-term Blackmann-Harris 2/L 2.5/L 14/L
0.9998 0.9999 0.9999
Norton-Beer weak 9/L 85/L 860/L
0.9971 0.9997 1.0000
Norton-Beer medium 4/L 40/L 510/L
0.9977 0.9997 1.0000
Norton-Beer strong 1.5/L 14/L 140/L
1.0005 0.9997 1.0000

Table 1: Truncation radius for AILS and norm of truncated AILS (no self-
apodisation). L denotes the maximal optical path difference.

If higher atmospheric layers contribute noticeably in the spectrum, the user defined
fine grid spacing should not exceed yp. In a strict sense, a sampling dense enough to
determine the continuous function S(v) exactly is impossible, because the incoming
spectrum is not bandwith limited! In practice, the KOPRA user should determine
a sufficient sampling density for the defined situation by a control run using halved
spacing.

In case of a Fourier transform spectrometer, the highest detectable sinusoidal mod-
ulation in the irradiated spectrum is determined by the maximal optical path differ-
ence of the instrument L. The limiting spectral modulation along the wavenumber
abscissa is then given by 1/L. Therefore, according to the sampling theorem, the
gridpoint density in the measured spectrum must be at least 1/2L. Because the mea-
sured spectrum is bandwith limited, the continuous function S(v) is then completely
determined.

KOPRA combines the convolution with the reduction of gridpoint density. The
convolution integral is evaluated on the user defined output grid. The simplest
interpolatoric integration rule is applied:

N
S(v;) = /S(l/) x AILS(v; —v)dv ~ Av x Y AILS(n) x S(i —n)

n=—N

The spectral stepwidth is denoted by Av. Since the integrand is localised (tends to
zero near the boarders of the integration interval), the accuracy of the result cannot
be enhanced substantially by means of any higher polynomial integration rule.

5 Noise Generator
KOPRA offers a noise generator. In case of a Fourier transform spectrometer, it is

usually assumed that the noise is Gaussian and independent from sampling position
in the interferogram. We follow this assumption here, because noise contributions
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of differing statistical behaviour are highly instrument and scene specific.

The irradiated spectrum calculated by KOPRA is interpolated to an equidistant
fine grid spacing before the convolution with the AILS is performed (see section
’convolution’). KOPRA introduces the noise in the spectral domain: the statisti-
cally independent Gaussian noise is generated on this same fine grid. This noise is
convolved with an appropriate AILS,,,;se and thereby adopts the correct statistical
properties found in the measured spectrum. Note that the AILS to be applied to
the irradiated spectrum and AILS,,,ise are not identical. The latter does incorpo-
rate neither self-apodisation nor modulation loss due to misalignment (see section
’Calculation of AILS’), because the variation of modulation efficiency with optical
path difference does not affect the noise level, which depends on total photon num-
ber and detector characteristics.

The statistically independent Gaussian noise of standard deviation o4 on the fine
grid is calculated using

y=05 xcos(2x7mx2z1)X/—2Xxlog X 22

with evenly distributed random numbers z;,zs € {0,1}. KOPRA uses the standard
Fortran 90 calling sequence for random numbers. Since no standard algorithm is
defined by the language, the quality of the random numbers generated may depend
on the computer and compiler used.

The convolution with AILS,,,;sc mixes the statistically independent sample points.
If no numerical apodisation is performed, AILS,,,;se is the sinc-function to maximal
optical path difference L. The distance between two independent sample points is
enlarged from the fine grid spacing Av to 1/2L. Due to this smoothing, the standard
deviation on the coarse grid o, is reduced:

Oc=0f XV2xAv x L

The KOPRA user specifies 0. measured at each sample point in the resulting spec-
trum assuming a sinc-shaped AILS, ;5. If numeric apodisation is performed, the
standard deviation at each sample point in the resulting spectrum is smaller than
o.. This convention is advisable, because it keeps the quality of the measurement
constant when comparing the retrieval quality using different kinds of apodisation
functions.

6 Field of View (FOV)

If the radiation field shows a significant directional variability inside the external
field of view (FOV), an averaged spectrum representative for the FOV has to be
constructed by weighting the radiance with the responsivity distribution over the
FOV.

In general, in the case of an upward looking remote sensing spectrometer, the FOV
convolution can be neglected and the spectrum irradiated along the instrumental
line of sight is representative. In case of a limb sounding instrument strong vertical
gradients in radiance arise especially at low tangent heights. The instrumental re-
sponsivity R(x1, x2) to a point source in infinity as a function of its orientation with
respect to the instrumental line of sight characterises the external field of view. The
FOV is assumed to be small enough to project R onto a plane without significant
distortion. xi,x2 are Cartesian coordinates measured in radians in this plane. The
X1 axis is tangential to the vertical great circle containing the instrumental line of
sight and the x5 axis is perpendicular to it and parallel to the horizon. The origin of
the system coincides with the instrumental line of sight. The irradiated spectrum S
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can be assumed to be independent from x» and the averaged spectrum S, is given
by

Sav

// S(x1) x R(x1, x2)dx1dx2
FOV

/ S0a) x / Rixt, x2)dxadx
X1 X2

Il

/ S(Xl) X Rvert(Xl)dxl
X1

with

/ / R(x1,x2)dxidx2 =1 and  Ryert(Xx1) = / R(x1, x2)dx2
FOV X2

KOPRA subdivides the FOV in 20 horizontal bands of equal thickness. The user
specifies the weight of each band Ry.,:; and the total vertical extent of the FOV
H according to the characteristics of his instrument.

xi+Ax/2
Rvert,i = / Rvert (Xl)dXI
X1=x:i —Ax/2

with

Ax=0.05x H and x; =Ax X (i —10.5) i=1,2,3,---,20

The irradiated spectrum has to be calculated for at least 3 relevant directions.
Linear interpolation between adjacent calculated spectra yields Sinterpoi (i) in the
centre of band i. The averaged spectrum is approximated by KOPRA using

S~ Efil Rvert,i X Sinterpol (7/)
av ~
2 Rueri

As can be seen, KOPRA does not demand R,..; = 1 for the weights of the bands
in the input file. Any set of weights proportional to the normalised R,e.; is valid
also.

Since in a Fourier Transform spectrometer the optical path difference depends on
the inclination of the wavefront in the interferometer, inhomogenous illumination of
the FOV affects the spectral response also. This effect is of secondary importance.
KOPRA allows to estimate the consequences on the measured spectrum assuming
a circular internal FOV.

The relation between the optical path difference x and the inclination of the wave-
front a versus optical axis measured inside the interferometer is

z(a) = z(0) x cos(a)

As a consequence, the contribution to the measured spectrum out of a cone surface
centered on the optical axis has a common spectral shift versus the irradiated spec-
trum. A monochromatic line located at v is shifted to lower wavenumber v(a) in
the measured spectrum. In small angle approximation one finds

v(a) =1y x (1 -0.5xa?) andthus dv(a)= -y x a x da

We consider an isotropic radiation field. The spectrum S contains a single monochro-
matic line with flux Fj

S(v) = Fy x 6(v — 1)
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This line is mapped into a boxcar in the measured spectrum extending from vy x
(1-0.5xa2,,) to vg. Qmas is the maximal wavefront inclination accepted by the
interferometer. The radiance (height of the boxcar) is 2Fy /vga?,,,.. This is under-
standable in the following way: each distinct cone surface leads to a contribution
proportional to its area 2mada, that is smeared along the spectral abscissa over
the interval vgada. Both area and spectral width are proportional to a and so the

radiances S of all contributions are equal and a boxcar results.

~ F 2 2 x F
S(w(a) = 0 xwxaxda_ X 20

max

TO2, 0n Vg X a X da Vg X @

The Fourier transform of the boxcar leads to the sinc-shaped self apodisation term (
see section ’Calculation of AILS, self apodisation’) in case of isotropic illumination.
Next we consider an anisotropic radiation field. The spectrum S to consist of a
single monochromatic line as before but the flux F depends on x;. We expand a
Maclaurin series

S(w,x1) = F(x1) x6(v—wo)
= (FO+F xx1 +05x F"xx?+---) xd(v — o)

To find the contribution of each cone surface, we have to integrate the flux in
each concentric circle in the x1, x2 plane. We introduce the azimuthal coordinate p
around the optical axis. The direction p = 0 is the positive x2 axis. The contribution
of each cone surface is given by

Sw(a) = — 2

T X 02

mazx Vg X«

/2
x/ (FO)+F' xx1 +05x F" xx3 +---) xaxdp
p=—m/2

The integration is performed by substituting the integration variable using a X
sin(p) = x1. This leads to

1 2

>— X
TXQhn VoXa

) 1
X/ (F(0)+ F' x x1 + 0.5 x F" x x3 ++-+) x
X

——dx1
1=—a V 1- X%/(IZ
Due to the symmetry properties of the integrand all terms containing odd derivatives

of F' cancel. KOPRA omits derivatives higher than 2, therefore the error is of order
0(4).

- 1 2
S(V(oz))zwxa2 ><Voxa><(7er(0)xa+0.25><7er”><a3)

Substitution of a? using a? = 2 x (1 — v/vp) leads to

o) ~ 2XFO P (1 —v/w)

o2

2
maz X V0 ez X V0O

The additional second term describes a triangle of zero height at vy and height
F"/2vy at v(@maz). The monochromatic line is mapped into a boxcar (connected
to F(0)) with a slant increasing towards lower wavenumber (connected to F'') upon.
An arbitrary spectrum can be interpreted as a dense superposition of monochro-
matic peaks. The relations given above for the monochromatic example therefore
hold for the general case also.
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To find S for an arbitrary irradiated spectrum, KOPRA convolves S with a nor-
malised boxcar extending along the spectral abscissa from —0.25 x vy x a2,,, to

mazr

+0.25 X vg x a?2,,.. KOPRA calculates the second derivative of S with respect to
the coordinate X1 = X1/@mas fixing the maximal inclination in the interferometer
as unit angle. 62S/dx1? is convolved with a triangle. At 4+0.25 x vy x a2,,, the
height of the triangle is zero. At —0.25 X vy x a?,,, the height of the triangle is a
fourth of the boxcar height. Note that the bases of boxcar and triangle are centered
on v = 0. KOPRA does not perform any spectral scaling or shift on the calculated
spectrum due to the finite FOV. It is assumed that the spectral scaling due to finite
FOV is absorbed in the spectral calibration of the instrument.

We expect the approximation to give more accurate results if the value for §25/5¥12
is chosen appropriate for the extended FOV as a whole instead of using the value
of 625/6x12 at X1 = 0. KOPRA constructs the representative value of the second
derivative from three FOV-averaged spectra S,, to nominal and slightly up- and

downward shifted line of sights.

7 Derivatives

In the retrieval process, derivatives with respect to all fitted parameters are needed.
In the context under consideration here KOPRA offers derivatives with respect to
elevation, spectral shift, ordinate offset, ordinate scale and parameters for AILS
description.

We call the spectral distributions at the location of the instrument for specified
LOS and FOV ’irradiated spectra’ and the affiliated results of the measurements
(without scale and offset consideration) ’instrumental spectra’. KOPRA models
irradiated spectra and instrumental spectra yielding ’synthetic irradiated spectra’
and ’synthetic instrumental spectra’. Scale and offset are considered via a multi-
plicative and additive constant, respectively, applied to the synthetic instrumental
spectra: Scaicor = aSinstr +b. Spectra of the latter kind are used in the calculation
of the derivatives.

e clevation

The derivation with respect to elevation is calculated from the difference of
two synthetic instrumental spectra, one referring to the specified line of sight,
the other one to a slightly modified line of sight.

If the FOV extent is neglected, KOPRA has only a single synthetic irradiated
spectrum at its disposal. The complete forward calculation has to be repeated
performing a renewed KOPRA run. If the FOV extent is taken into account,
KOPRA has several synthetic irradiated spectra referring to different eleva-
tions at its disposal, and the two synthetic measured spectra needed are found
by interpolation using the given set of synthetic irradiated spectra (see section
field of view’). The increment in elevation is set to a small fraction (0.025)
of the full vertical extent of the FOV.

e spectral shift

The derivation with respect to spectral shift is calculated from the synthetic

instrumental spectrum S(%),i = 1,2, -+ , Ntmaz bY
g0 - S50

5o (i) = SR 2 <0 < Mg — 1
%(nmam) — S(Tbmaz)TASV(nmazfl)

e ordinate offset
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The derivative of Scaicor With respect to an additional constant is unity.

e ordinate scale

The derivative of Scqicor With respect to the multiplicative constant a is the
synthetic instrumental spectrum S;, ¢

e AILS parameters: modulation efficiency and phase error

To calculate the derivative with respect to the modulation efficiency parameter
m (see section 'Calculation of AILS’) the AILS is calculated twice from the
beginning. The derivative of the synthetic instrumental spectrum S;,s¢-(mo)
with respect to m is the convolution of the synthetic irradiated spectrum Sj,.,
with the derivative of the AILS with respect to m.

5Sinstr (mO) _ AILS(mO + Am) - AILS(mo)
om N Am

® S’irr

The derivative with respect to phase error ¢ is calculated in the same way,
but the amplitude of the modulation efficiency remains unchanged and is
not recalculated. The increments used by KOPRA are Am = 10732 and
Ayp = 107%, well below the practical limit of retrieval accuracy.

e BOMEM AILS parameters: retroreflector linear shear variation along z-axis
and IR misalignment along y direction

The AILS is calculated twice from the beginning. The increments used by
KOPRA are 10~* in case of the linear shear variation along z-axis and 10~5
rad in case of IR misalignment, well below the practical limit of retrieval
accuracy.
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